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ABSTRACT

Prior to the drilling of the HGP-A well at the Kapoho geothermal field
in December 1975 t it had generally been assumed that geothermal reservoirs on
the Island of Hawaii were low-temperature liquid-dominated reservoirs which
were constantly recharged from the ocean. Two numerical studies based on this
conceptual model were carried out to investigate heat transfer and fluid flow
characteristics in such a reservoir. It was found that (1) even under the
most unfavorable conditions t i.e. t in the absence of caprock for the prevention
of heat loss and with constant recharge from cold seawater t it is possible to
have a large amount of hot water at shallow depth t (2) the upwelling of the
water table resulting from geothermal heating is small t and (3) the rate of
contraction of isotherms resulting from the withdrawal of fluid from a
production well depends not only on the withdrawal rate t but also on the size
of the heat source as well as the relative location of the production well
and the heat source.

After the drilling of the HGP-A well had been completed in April 1976 t
it was found from the core samples that the permeability of the formation
varies with depth t and that the low salinity of the water samples taken from
the well indicates that there is a barrier between the well and the ocean t
preventing the free flow of seawater. Thus t a third numerical model taking
into consideration the layered structure of the formation t with recharge and
discharge through an upper permeable boundarYt was carried out to simulate
the free convection processes at the Kapoho geothermal field. In addition,
analytical studies on convective heat transfer from dikes and sills in an
aquifer with high permeability have been performed, and analytical expressions
for heat transfer rates and the size of the hot water zone from hot intrusives
have been obtained. The results of this investigation have given considerable
insight on heat and mass transfer processes in a liquid-dominated volcanic
geothermal reservoir.
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INTRODUCTION

The task force for reservoir engineering consisting of the numerical

modelling and well testing groups was formed during Phase I of the project.

The initial assignment of the modelling group was to carry out numerical

studies to assess whether a large amount of hot water exists in a volcanic

island reservoir, unconfined from the top and constantly recharged with cold

seawater. The ultimate objective of the modelling group was to develop a

computer code capable of simulating the performance of a geothermal well in

a liquid-dominated volcanic island reservoir. From a number of numerical

models carried out during Phases I and II of the project, it was concluded

that a large amount of hot water at high temperature is indeed possible in

the Hawaiian island reservoir even under the most unfavorable conditions
where a caprock is absent and with cold water being recharged from the ocean.

During this period of time a number of analytical studies were also carried

out on heat transfer from hot intrusives such as dikes and sills embedded in

a formation with high permeability. After the HGP-A well had been drilled and

field data analyzed, it was found in contrast with earlier speculation that

(1) the permeability of the formation is small, (2) the low chloride content

of water samples taken from the well suggests that there is a barrier between

the well and the ocean to prevent the free flow of seawater, and (3) the

bottomhole temperature and pressure measurements indicate that two-phase

flow rather than single-phase flow exists in the formation. Since a meaningful

simulation of the Kapoho geothermal field cannot be carried out until the

reservoir characteristics are known, it was decided to discontinue the

numerical modelling efforts until more holes in the area are drilled and

well testing programs completed. The following is a summary of results

obtained between May 1973 to September 1977 during which the numerical

modelling work was funded. The results of the investigation have given

considerable insight on heat and mass transfer processes in a liquid-

dominated geothermal reservoir. Details of the work are reported in twenty

b1 ' t' (3-22)pu lea lons .



OBJECTIVES

The primary objectives of this task have been (1) to assist in the

assessment of geothermal resources on the island of Hawaii; (2) to estimate

the capacity of the Kapoho geothermal field; (3) to predict the lifespan and

performance of a geothermal well under different operating and resource condi­

tions; and (4) to study the environmental impacts on the Ghyben-Herzberg lens

resulting from withdrawal and reinjection of geothermal fluids.

NUMERICAL STUDIES

Prior to the drilling of the HGP-A well, it had generally been assumed

that geothermal reservoirs on the Island of Hawaii are low-temperature hot­

water reservoirs whi~h are constantly recharged from the ocean, owing to the

high porosity and permeability of the basaltic formation. It had been

speculated that while aquifers at shallow depth on the island may be unconfined

from the top, confined aquifers may exist at depth due to self-sealing effects.

The heating of the groundwater in the aquifers is provided by a magma chamber

at shallow depth, the rift zone, as well as numerous hot intrusives. An

overly-simplified view of the Hawaii geothermal reservoir is shown in Fig. 1.

As the detailed geological and hydrological conditions at the Kapoho

area were unknown prior to the drilling, the strategy adopted by the numeri­

cal simulation group had been to study simplified situations during the

initial phase of the work. These simplified models, which consider different

-2-
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Figure 1. Island Aquifer with Geothermal Heat Source



effects one at a time, will aid in a qualitative understanding of the
physical processes involved. After maturity and expertise have been
developed and geophysical exploration data on the Kapoho area have been
analyzed, more realistic models will be considered. The research work
will then culminate in the development of a general computer code, capable
of predicting the characteristics of the Kapoho geothermal field. For
the initial models, the Hawaii geothermal reservoir (Fig. 1) is idealized
as a two-dimensional porous medium, heated by impermeable bedrock from below,
and recharged from the ocean through vertical boundaries (Fig. 2). To
simplify the mathematical formulation of the problem, the following addi­
tional assumptions have been made:

A. The temperature of the fluid is everywhere below boiling for the
pressure at that depth.

B. Properties of the groundw~ter and the rock formation such as the
thermal conductivities, specific heats, kinematic viscosity, and
permeability are assumed to be homogeneous and isotropic.

C. The Boussinesq approximation, used in classical free convection
problems, is employed.

The mathematical model is based on the conservation laws of heat and mass,
as well as the Darcy law for flow through a porous medium. With the above
approximations, the governing equations in rectangular coordinates can be
combined and reduced to the following two coupled non-linear partial differen­
tial equations in terms of P and 8 as

(1 )

where

[ ap ae (ap ) 3e ]D - ax ax - ax + 1 - s8 aI

-4-
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p-p T-T _ 2P _ 0 _ s X x/h Z z/h
=Pll e = T -T T = at/crh - - ,

sg m s

L - t/h E: - 13(Tm-Ts ) and D - psKgh/all

with p, T, t, p, 8 and ~ denoting the pressure, temperature, time, density,
thermal expansion coefficient, viscosity; a and K denoting the thermal diffusivity
and permeability of the medium; g the gravitational acceleration; Tm denoting the
maximum temperature of the impermeable surface, and the subscript II S II denoting
the condition in the ocean; £: and D are dimensionless parameters; cr is the ratio
of heat capacity of the fluid to that of the medium and Po is some reference
pressure which is assumed to be constant. In the above formulation, the parameters
~re D and c which are related to the Rayleigh number by the relation DE: = Ra. If
Po is chosen to be the hydrostatic pressure which varies with depth, Eqs. (la) and
(2a) will be replaced by

(3)

(4)

(5 )

where Ra is the only parameter of the problem.

For most of the two-dimensional problems of free convection in geothermal
reservoirs, it is convenient to express the governing equations in terms of stream
function and temperature which are given by

d2
1j1 + d2

\!, = _ aB
ax 2 az2 ax '

(6)
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where'¥ :: ~·JlJijps9hB(Tm-\)K which is related to the dimensionless velocity
components by U = a,¥jaZ and V = -a'¥jax. With appropriate boundary and initial
conditions, Eqs. (1) and (2) [or the equivalent set of equations (3) - (14) or

(5) - (6)J have been solved numerically for the investigation of the following
problems.

Model No. 1 Convection in a Geothermal Reservoir Unconfined from the Top ~J

To study the possibility of the upwelling of the water table due to geo­
thermal heating as suggested by Keller (1), the problem of steady free

convection in an unconfined geothermal reservoir was treated (Fig. 2a). In the
mathematical formulation of the problem, the shape of the water table is not

known a priori and must be determined from the solution. Since exact numerical

solutions to the problem are very difficult, approximate perturbation solutions

applicable to reservoirs at low Rayleigh numbers are obtained. As a result of

these approximations, the governing equations are linearized and the zero-order

and the first-order problems are, respectively, the Laplace equation and Poission
equation with nonhomogeneous boundary conditions, which can be solved numerically.
Figure ~ shows the isotherms in an unconfined geothermal reservoir with D = 500

and € = 0.1. or Ra = 50. where Case A represents heating due to a vertical hot
dike, 0.5 unit in height and 2 units in width, located at the center of the

aquifer with a cold impermeable surface at the bottom; Case B represents heating

due to a magma chamber from below. Heating in Case C is due to the combination of

a dike as in Case A, and a heated horizontal bedrock as in Case B. The effects

of different heat sources on the upwelling of the water table are shown in

Fig. 4, where it can be concluded that the upwelling of water table due to
geothermal heating is small.

Model No. 2 Convection in a Geothermal Reservoir Confined from the Top

The second model considered is that of a two-dimensional reservoir confined by

caprock at the top and bedrock at the bottom with recharge through vertical

boundaries from the ocean (see Fig. 2b). Since no free surfaces are involved

in this problem. exact numerical solutions for any Rayleigh number can be obtained

by finite difference methods. This model was used to study the formation and with­
drawal of fluids in an island geothermal reservoir.

(A) Formation of an Island Geothermal Reservoir [9J
Consider that the idealized aquifer as shown in Fig. 2b having an aspect

ratio of 4, initially isothermal and motionless, is suddenly heated by an intruded
magma chamber at a shallow depth. The subsequent development of isotherms in the

-7-
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reservoir having 0 = 4.000 and € = .05 (ra = 200) is shown in Fig. 5 where
T = 0.001 corresponds to 200 years on the real time scale. It is shown in the
figure that the isotherms move gradually upward and reach a steady state con­
dition approximately at T= 0.035. corresponding to approximately 7000 years.
It is found that the time required to reach steady state increases as the value
of 0 decreases.

Effects of Rayleigh Number [5J
Figures 6-8 show the steady state convection pattern and isotherms in an

axisymmetric reservoir at different values of Ra. As shown in Figs. 6a and 6b.
cold water from the ocean moves inland along the lower portion of the aquifer
and i~ gradually being heated by the hot bedrock. Near the point of maximum
heating, the fluid rises as a thermal plume. As the hot water reaches the top.
it spreads around the caprock and is finally discharged to the ocean in the upper
portion of the aquifer. A comparison of Figs. 6a and 6b shows that close
convective cells disappear as the value of Ra is increased. The effect of Ra
on the isotherms is shown in Fig. 7. It shows that for small values of Ra
(Ra = 50 for example). the shapes of the isotherms are similar to those by heat
conduction. As the values of Ra increase, the isotherms develop into mushroom
shapes. The results have important implications on the selection of a drilling
site. They indicate that for a reservoir with large value of Ra and having a hot
heat source from below, a large amount of hot water is indeed available at shallow
depths. Fig. 8 shows the vertical temperature profiles at different locations in
an island aquifer. The dimensionless temperatures at the center line of the thermal
plume incr~ase rapidly from nearly zero at the caprock to almost unity somewhat
below the caprock. The vertical temperature profiles along the thermal plume are
shown to be different from the rest of the profiles which have a temperature
reversal at a lower elevation. It is worth mentioning that the temperature reversal
occurs because of the lateral movement of groundwater. It is interesting to note
that temperature vs. depth measurements obtained by Keller [lJ show also a temperature
reversal behavior (Fig. 9). A comparison between theory and masurements shows a
striking similarity (Fig. 10).

Effects of Thermal Boundary Condition at the Caprock ~. Figure 11 shows
the steady temperature distribution in a geothermal reservoir with an adiabatic
caprock. The effects of thermal boundary condition on the caprock can be shown
by comparing the isotherms in Fig. 11 to those of Fig. 7 which is for a reservoir

-10-
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with a heat-conducting caprock. As expected, temperature distribution every­

where in the reservoir having adiabatic caprock is higher than that with a heat­
conducting caprock. However, the increase in temperature is most significant in

the region adjacent to the caprock. The larger the value of Ra, the smaller the

region in which temperature is affected. In other words, for large values of Ra,

the effect of thermal boundary condition on the caprock is confined to a small

region adjacent to the caprock, with the temperature distribution in the rest of

the reservoir remaining unaffected. Thus, the size of hot water zone at shallow

depth depends on the thermal condition of the caprock. The effect of thermal

boundary condition at the caprock on the total heat transfer rate of the bedrock

is presented in Fig. 12, where it is shown that the heat transfer is relatively

independent of the thermal boundary condition at the caprock.

Effects of Heating Length and Dike Intrusion [5J. The effects of heating

length of the bedrock on steady state convection pattern and its associated

isotherms are shown in Figs. 13 and 14. The number of convective cells and the

associated thermal plumes are dependent upon the value of f, that is, the ratio of

the heating length to the height of the reservoir. It is shown that two convective

cells are generated for f = 2, while four convective cells are generated for

f = 3. The effects of dike intrusion on convection pattern and temperature dis­
tribution are shown in Figs. 13c and 14c. Comparison of curves in Figs. 13 and 14

respectively shows that the convective pattern and the shape of isotherms depend

not only on the size of the heating length but also on the manner it is heated,

i.e., whether it is heated vertically or horizontally. For example, although

Figs. 13b and 13c have the same heating length, the convective patterns and their

associated temperature contours (as shown in Figs. 14b and 14c) are completely

different.

(8) Withdrawal of Fluids in an Island Geothermal Reservoir [6, 8, 9J
Pressure gradients in a geothermal field can be generated by man-made with­

drawal or reinjection of fluids during production. As a result, the convective

movement of groundwater in the geothermal reservoir depends not only on the

buoyancy force but also on the induced pressure gradients. For a sufficiently

strong withdrawal rate, isotherms in the reservoir may contract which will have

important implications to the lifespan of a geothermal well.

Figure 15 shows the contraction of isotherms of a rectangular geothermal

reservoir with an aspect ratio of 4 and with 0 = 7000 and c = 0.05 (or Ra = 350)

-18-
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resulting from the fluid withdrawal. The dashed lines indicate the isotherms before

fluid withdrawal, while the solid lines indicate the isotherms after 30 years

(Fig. 15a) and lOa years (Fig. 15b) of continuous withdrawal of fluids at a rate

of 7 x 1061bm/hr-ft from a point sink located at X = a and Z = 0.5, i.e., directly

above the point of maximum heating. While it is shown in the figure that isotherms

hardly change after 30 years of operation, the temperature of the groundwater above

the sink decreases noticeably after 100 years of operation.

Figure 16 shows the contraction of isotherms resulting from the withdrawal of

fluid along a line sink located vertically upward from the point (0, 0.5) to the

top of the aquifer having 0 = 7000 and € = 0.05. The isotherms before the fluid

withdrawal are the same as those in Fig. 15 and are shown by dashed lines. The solid

lines are the isotherms after 30 years of continuous withdrawal of fluids at the

rate of 1.7 x 1071bm/hr-ft. At this rate of withdrawal, it is shown that the

temperature of groundwater in the upper portion of the reservoir decreases notice­

ably after 30 years of operation. It should be noted that the rate of contraction

of isotherms not only depends on the withdrawal rate but also on the size of the

heating length, i.e., the temperature distribution of the bedrock.

Model No.3. Convection in a Multi-Layered Geothermal Reservoir

Model No.3 was developed after HGP-A well had been drilled. Preliminary

analysis of data from geophysical .exploration and well testing suggested that some

of the assumptions made in the earlier models do not correspond to the conditions

that exist at the Kapoho geothermal field. From the examination of mud loss during

drilling and from core samples taken from the well, it appears that layered struc­

ture exists in the rock formation, and that there is no evidence of a caprock

being formed. Analysis of the water samples taken from the well shows that the

groundwater has an extremely low salinity, indicating that the groundwater is most.
likely to be of meteoric origin with little recharge from the ocean.

~odel No.3 assumes that (1) the aquifer can be recharged or

discharged from the top through a permeable upper boundary, and (2) the aquifer

is comprised of three layers with the middle layer being the least permeable, and

the upper and lower layers being high and moderate in permeability. The heating

of the groundwater in the aquifer is provided by dike complexes from the sides

and a magma chamber from below. Since the three layers have different physical

properties, the 90verning equations must be applied separately to the three layers.

The boundary conditions at the interfaces are such that temperatures and stream

functions are continuous and that flow rates normal to the interfaces are the same.
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Numerical solutions have been carried out for six cases with different

Rayleigh numbers and aspect (length to height) ratios. Representative results
for streamlines and temperature distribution are shown in Fig. 17. where the

aspect ratio is 2 and the Rayleigh numbers for the three layers are taken to be
300, 120 and 750. The multi-cellular flow with cell width of 0.5, plotted in
Fig. 17a for half the domain, seems to be the preferred mode as the system
approaches steady state. The streamlines in Fig. 17b show strong convective
flows in the upper and lower layers where the ~ermeabilities are higher. Cellular
convection is absent in the middle layer where permeability is low. Vertical
temperature profiles for this case are plotted in Fig. 18. Comparison of

Fig. 18 with temperature profiles observed at HGP-A well (Fig. 19) shows a
strong resemblance, demonstrating the credibility of the mathematical model.

ANALYTICAL STUDIES

It will be of great interest if some simple algebraic equations can be
obtained for the calculations of heat transfer rate and size of the hot water
zone adjacent to the hot intrusives which exist in the Kapoho geothermal field.

For these purposes, some effort has been devoted to obtain analytical solutions
for convective heat transfer from vertical or horizontal heated surfaces embedded

in a rock formulation saturated with water. The methodology used to solve Eqs.
(1) and (2) (or an equivalent set of equations) approximately is akin to the
boundary layer simplifications in classical viscous flow theory. The following

analytical solutions have been obtained.

Free Convection from a Dike.
Closed-form solutions have been obtained for steady free convection from

an isothermal dike at T , trapped in a rock formation at T. The expression forw . 00

the size of the hot-water zone (j .e .• the so-called thermal boundary layer

thickness) is

-x
(7)

where x is the coordinate along the surface of the dike.
heat flux is

The local surface

(8)

where A = T -Tw 00'
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Eq. (8) can be rewritten in dimensionless form as

= 0.444 (9)

where Nux = hkX and Ra = p gBK(T -T }x/ are the local Nusselt number andx 00 w 00 va

Rayleigh number. The temperature and vertical velocity distribution in the porous
layer adjacent to an isothermal dike at 200°C in an aquifer at 15°C are shown
in Figure 20.

Free Convection from a CylindriGal Shape Intrusive [15]. The problem of

free convection about the outer surface of a vertical cylindrical intrusive with
wall temperature T = T + AxA was treated by Minkowycz and Cheng [11] usingw 00

local-similarity and local non-similarity methods. Figure 21 shows that the
ratio of local surface heat flux for a cylindrical shape body with radius ro
to that of a flat plate with a width S = 2nro depends on both A (wall temperature
distribution) and ~ where ~ = 2x 1 ~ is a measure of curvature effect.

r 0 (Ra) 2
x

Injection of Hot Water or Withdrawal of Cold Water Along Wells or Fissures [13J.
For the special cases where the temperature and velocity of the mass flux are of
the form Tw = Too ± Ax A and v = axn, similarity solutions have been obtained for the
special cases where n = (A-l)/2. The effects of mass flux on the thermal boundary
layer thickness and the temperature gradients at the wall for injection of hot
water were investigated [13].

Mixed Convection About Vertical or Nearly Vertical Dikes [18J. For mixed
convection about nearly vertical impermeable surfaces at a prescribed temperature
T = T + Ax A, inclined at an angle mn/2 with respect to the horizon, and with freew 00

stream velocity U = Bxn where n = m/(2-m), similarity solutions exist if n = A.
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It is found that the thermal boundary layer thickness is

(10)

and the surface heat flux is

(11 )

which can be rewritten as

(12 )-[8 1 (0)]=Nu
Uoox ~

where RePr = -ot and the values of nT and [-8 1 (0)] at different values of the
prescribed parameter of GriPe are shown in Figs. 22 and 23.

To gain some feeling on the order of magnitude of various physical quantities
in a geothermal reservoir, consider a vertical heated surface (such as a dike) at
215 e C embedded in an aquifer at 15°C. If a pressure gradient exists in the reservoir

such that groundwater is flowing vertically upward with velocity U , the values of
co

heat transfer rate and the size of the hot water zone can be determined from Figs.
22 and 23. The results of the computations for U

co
varying from 0.01 cm/hr to 10

cm/hr are plotted in Figs. 24 and 25. It is shown that the total heat transfer
rate for a vertical heated surface, 1 km by 1 km, increases from 20 MW to 110 MW,
while the thickness of the hot water zone at 1 km decreases from 130 m to 20 m.

Free &Mixed Convection About a Sill or Bedrock (12, 16)
Closed form solutions were obtained for free and mixed convection about a

heated horizontal bedrock in an aquifer. Effects of cold water injection near a
heated bedrock or a sill were also considered. It is found that the controlling

. 3

parameter for the problem is the prescribed parameter Ra/(RePr) ~ The effects of
this parameter to heat transfer rate and the size of hot water zone were also
investigated (12, 16).

Unsteady Convective Heat Transfer and Effects of Non-isothermal Environment
The effects of unsteady convection and non-isothermal environment for free

convection aQjacent to hot intrusives were considered by Johnson and Cheng [21].
It is found that similarity solutions with non-isothermal environments exist only
for steady free convection about vertical surfaces. Also, several very specific
solutions exist for unsteady free convection about vertical and horizontal heated
surfaces and vertical cylindrical shape intrusives.
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Integral Methods for Convective Heat Transfer in Rock Formation
The Karman-Pohlhausen integral method, widely used in classical convective

heat transfer problems, has also been investigated for possible application to
convective heat transfer problems in a subsurface formation [22]. To check the
accuracy of the approximate method, the problems of free and mixed convection
adjacent dikes and sills where similarity solutions have been obtained are solved
on the basis of the integral method. It is found that the results for Nusselt
numbers based on integral methods are in good agreement with those obtained from
similarity solutions. Thus, the integral methods can be applied with confidence
to other convective heat transfer problems in subsurface environment where no
similarity solutions exist.
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