The Open Access Israeli Journal of Aquaculture – Bamidgeh

As from January 2010 The Israeli Journal of Aquaculture - Bamidgeh (IJA) will be published exclusively as an on-line Open Access (OA) quarterly accessible by all AquacultureHub (http://www.aquaculturehub.org) members and registered individuals and institutions. Please visit our website (http://siamb.org.il) for free registration form, further information and instructions.

This transformation from a subscription printed version to an on-line OA journal, aims at supporting the concept that scientific peer-reviewed publications should be made available to all, including those with limited resources. The OA IJA does not enforce author or subscription fees and will endeavor to obtain alternative sources of income to support this policy for as long as possible.

Editor-in-Chief
Dan Mires

Editorial Board
Sheenan Harpaz
Agricultural Research Organization
Beit Dagan, Israel

Zvi Yaron
Dept. of Zoology
Tel Aviv University
Tel Aviv, Israel

Angelo Colorni
National Center for Mariculture, IOLR
Eilat, Israel

Rina Chakrabarti
Aqua Research Lab
Dept. of Zoology
University of Delhi

Ingrid Lupatsch
Swansea University
Singleton Park, Swansea, UK

Jaap van Rijn
The Hebrew University
Faculty of Agriculture
Israel

Spencer Malecha
Dept. of Human Nutrition, Food and Animal Sciences
University of Hawaii

Daniel Golani
The Hebrew University of Jerusalem
Jerusalem, Israel

Emilio Tibaldi
Udine University
Udine, Italy

Copy Editor
Ellen Rosenberg

Published under auspices of
The Society of Israeli Aquaculture and Marine Biotechnology (SIAMB), University of Hawaii at Manoa Library and
University of Hawaii Aquaculture Program in association with
AquacultureHub
http://www.aquaculturehub.org

ISSN 0792 - 156X

© Israeli Journal of Aquaculture - BAMIGDEH.

PUBLISHER:
Israeli Journal of Aquaculture - BAMIGDEH -
Kibbutz Ein Hamifratz, Mobile Post 25210,
ISRAEL
Phone: + 972 52 3965809
http://siamb.org.il
GROWTH AND SURVIVAL RATES OF BEARDED HORSE MUSSEL (\textit{Modiolus barbatus} Linne, 1758) IN MERSIN BAY (TURKEY)

A. Lok1, S. Acarli1, S. Serdar1, A. Kose1 and P. Goulletquer2

1 Department of Aquaculture, Fisheries Faculty, Ege University, Bornova Izmir, 35100 Turkey

2 Ifremer – Genetics, Aquaculture, Pathology Research Laboratory, La Tremblade, 17390 France

(Received 26.8.05, Accepted 2.11.05)

Key words: bearded horse mussel, growth, \textit{Modiolus barbatus}, survival, Turkey

Abstract
The growth and survival rates of four size classes (10, 15, 20, and 25 mm) of bearded horse mussels (\textit{Modiolus barbatus}) grown in net bags in Mersin Bay, Izmir, were assessed from May 2001 to May 2002. Temperature ranged 14-23°C, average chlorophyll \textit{a} was 3.34±0.35 µg/l, average total particulate matter 12.43±0.68 mg/l, and average particulate organic carbon 210.23±18.00 µg/l. Shell lengths increased 23.05, 19.76, 19.40, and 12.09 mm in the four classes (from small to large) and live weights increased 13.21, 10.46, 10.06, and 4.96 g, respectively. Survival rates ranged from 25% in the smallest size class to 87.5% in the 20 mm class ($p<0.05$). Mussels grew significantly fastest in the smallest size class ($p<0.05$).

Introduction
The bearded horse mussel \textit{Modiolus barbatus}, a boreal species, is a bivalve mollusk that inhabits coastal marine environments down to about 110 m, where it may occur in very large communities (Tebble, 1976; Jasim and Brand, 1989). It has been reported on the southern and western coasts of Great Britain, the west coast of Ireland, the southern part of the Iberian Peninsula, in the Mediterranean Sea, and along the Atlantic coast of Morocco (Tebble, 1976). In Turkish waters, it ranges from the Mediterranean to the Black Sea (Alpbaz, 1993). The mussel is harvested from natural beds for human consumption together with the Mediterranean mussel (\textit{Mytilus galloprovincialis}) and exported. A rather limited amount of \textit{M. barbatus} is consumed in Europe (Alpbaz, 1993).

* Corresponding author. E-mail: aynur.lok@ege.edu.tr
While extensive literature is available on *M. galloprovincialis* and *Mytilus edulis*, limited information is available on species of the mytilid *Modiolus* genus which has been poorly known until recently. Our study aims to estimate the seasonal growth of *M. barbatus* based on growth and survival rates of individually measured mussels in four distinct size classes, to aid in decision-making for future culture and fishery management.

Materials and Methods

Study area. The study site was located at a fish farm in Mersin Bay (38° 12.77’ N, 26° 25.46’ E), Aegean Sea, about 80 km west of Izmir, Turkey (Fig. 1). The depth at the farm varied 18-24 m. Subsurface water was sampled monthly from May 2001 to May 2002 at a depth of 5 m. Although we were not in the study area during July and November, the farmer took water samples. Temperature was measured with a mercury thermometer that ranged -10 to 100±0.5°C and salinity (‰) was measured with a hand refractometer.

Phytoplankton biomass, the amount of seston (total particulate matter; TPM), and the concentration of particulate organic carbon (POC) were determined according to the methods of Strickland and Parsons (1972).

Growth and survival rates. The initial population of bearded horse mussels was sampled from the fish cages and hand-sorted to remove other organisms and debris. The mussels were divided by length into four size groups: 10 mm (9.88±0.35), 15 mm (14.86±0.23), 20 mm (19.61±0.26), and 25 mm (25.76±0.54 mm). The length and weight of each mussel were measured. One hundred and fifty mussels from each group were placed into plastic mesh bags at 50 per bag (experiment was conducted in triplicate) and the bags were hung in a cage at 0.5 m below the water surface. The mussels were sampled in early May 2001 and monthly, except for July and November, until May 2002. During each sample, the mussels were removed from their bags, measured as above, and placed into clean bags to avoid bio-fouling. Shell
length and total weight were individually mea-
sured using calipers (0.1 mm) and a balance
(0.01 g), respectively.

The specific growth rate (SGR; %) was
calculated using the following equation
(Chatterji et al., 1984):
\[SGR = \left[(\ln L_2 - \ln L_1) / (T_2 - T_1) \right] \times 100, \]
where \(L_1 \) and \(L_2 \) are the
lengths at times 1 and 2 and \(T_1 \) and \(T_2 \) are
times 1 and 2 in days. The von Bertalanffy
Growth Function, developed by von
Bertalanffy (Pauly, 1982), is described by the
equation:
\[L_t = L_\infty \left[1 - e^{-K(t_1 - t_0)} \right], \]
where \(L_\infty \) is
the asymptotic (or theoretical maximum)
length in millimeters, \(K \) is the growth constant,
\(L_t \) is the length at time \(t \), and \(t_0 \) is the theore-
tical time when length equals zero. The model
was applied to calculate the maximum size
\(L_\infty \) and \(K \) for each size class.

Survival (%) was estimated as \((N_t/N_0) \times 100 \),
where \(N_t \) is the number of live mussels
removed from the bags after time \(t \) and \(N_0 \) is
the number of mussels at the beginning of the
experiment.

Regression model. Relationships between
shell length and live weight were described by
a series of allometric equations in the form
\[Y = aX^b, \]
where \(Y \) = weight, \(X \) = length, and \(a \)
and \(b \) are fitted parameters (Gould, 1966).
The data fitted to a straight line by least
squares regression analysis. Data were
pooled for regression analysis.

Statistical analysis. One-way ANOVA was
used to test for differences in means between
size classes for each sampling date. Levels
within a significantly different experimental
factor were analyzed using Tukey’s Honest
Significant Difference (HSD) multiple compar-
ison test. Survival data (percentage) were arc-
sine transformed to test for significant differ-
ences among size groups. Chi-square was
used to test the significance of variance in the
mortality rate. The functional relationship
between shell characteristics was tested
using regression analysis. All statistics were
executed using SPSS software.

Results

Hydrological conditions. The study area had
favorable salinity, temperature, and food
availability throughout the year. Salinity
ranged 36-37‰ without seasonal variability,
water temperature ranged 14-23°C with a sig-
nificant peak in summer and a low in
December, and chlorophyll a concentration
had an irregular pattern ranging 1.97-5.37 µg/l
(Fig. 2). The average total particulate matter
was 12.43±0.68 mg/l (7.2 in March to 17.5 in
November).

Growth rate. Length and weight data are
plotted in Fig. 3 and the equation with the best
fit is shown. Growth is shown in Fig. 4. The
time of initiation of the experiment clearly
influenced the growth rate during the first half
year; the total weight gains of the smaller size
groups were less impacted than those of the
larger size groups during the cold months of
December and January. Mean shell length in
the smallest size group reached 32.93±0.65
mm, in the 15 mm group 34.62±0.76 mm, in
the 20 mm group 39.01±0.76 mm, and in the
largest 37.85±2.55 cm (\(p < 0.05 \)). The length
increment of the 10 mm group was approxi-
mately twice that of the 25 mm group, 233.2%
for the small size compared to 46.9% for the
large (\(p < 0.05 \)). Monthly SGRs ranged 5.51-
22.23% in June and 2.66-3.93% in October,
and then stabilized for all size classes (Fig. 5).

Survival rate. The lowest survival rate
occurred in the 10 mm group (25%) and sig-
nificantly differed from survival in the remain-
ing three groups (\(p < 0.05 \)). Mortality in the 10
mm group occurred in five months (Fig. 6). In
the 15 mm group, overall survival was 83.6%
with mortality occurring in August (4.34%),
October (9.09%) and March (4.34%). The
highest survival rate occurred in the 20 mm
group (87.50%), where mortality was ob-
served only in December. In the 25 mm group,
mortality occurred in August (33.3%) and
January (25%).

Discussion

The successful cultivation of any shellfish
species of commercial significance depends
directly on seed availability, suitable environ-
mental conditions for growth, and limited pre-
dation (Hickman, 1992). The ambient chloro-
phyll a concentration in water suitable for
mussel culture ranges 17-40 µg chlorophyll/l
(Cheung, 1982), higher than the values mea-
Fig. 2. Monthly (a) temperature, (b) total particulate matter (TPM), (c) chlorophyll a, and (d) particulate organic carbon (POC).

Fig. 3. Shell length vs live weight in bearded horse mussel, *Modiolus barbatus*, raised in Mersin Bay, Turkey.
sured in this study, although a phytoplankton content of about 3.5-5.2 µg chlorophyll/l can be sufficient for rapid mussel growth (Sivalingam, 1977). Filter-feeding organisms are able to remove a large amount of particulate matter from suspension (Navarro and Thompson, 1997). Tumanda et al. (1997) reported that POC values of 240.5-4041.4 µg/l with a mean of 977.9 µg/l have high food content. The POC content in this study was usually lower than this range. Therefore, our results tend to indicate that the growth rate of *M. barbatus* in Mersin Bay is dominated mainly by temperature.

In the present study, the shell length increased almost continuously from the beginning of the experiment. Total weight increased almost continuously until October, then became irregular until the end of the experiment. This may be related to the water temperature which limited the feeding time and food availability. Most shell growth occurs during warm months with a limited shell increase in cold months (Mitchell et al., 2000). Below the water temper-
nature of 14°C (in December and January), growth in both length and weight dropped, similar to that of *M. galloprovincialis* in the Black Sea (Karayucel et al., 2003). Although the von Bertalanffy growth equation did not reflect the seasonal variation in growth, a main cause of such variations is the variation in temperature (Theisen, 1968). The estimated value of K is inversely related to the estimated value of L_∞ (Theisen, 1973). The von Bertalanffy growth model generated the following result: $L_t = 39.907 \cdot [1 - e^{-0.14(t+0.95)}]$. Compared to the growth parameter of *Modiolus metcalfei* ($K = 2.04$; Tumanda et al., 1997), the K value of the *M. barbatus* in this study, 0.95, was very low.

The survival rate was relatively high for the 20 mm and 15 mm groups and lowest in the 10 mm group. The process of handling every month for measurement may have affected the survival rate of the mussels in the smallest size class. Okumus (1993) reported that the mortality rate of *M. edulis* in Scotland was 4.7-14.4%, lower than the mortality rate of *M. barbatus* in Mersin Bay.

The present study shows that Mersin Bay is a suitable site for successful cultivation of mussels. As this is the first experiment on *M. barbatus* growth in Turkey, further experiments are needed to improve and optimize growth in Mersin Bay. Some might compare the effects of growout facilities such as bags or ropes on growth and mortality rates or on limiting fouling settlement. Others may search for a biological control of fouling. Both should be complemented by biological data on gonad maturity, spawning, meat yield, and biochemical composition of *M. barbatus*.

Acknowledgements

This research work was supported by research grants from TUBITAK. The authors are grateful to Mrs. G. Metin for analysis of the particulate organic content and to H. Saygi for statistical analysis.

References

Growth and survival of bearded horse mussel

