As from January 2010 The Israeli Journal of Aquaculture - Bamidgeh (IJA) will be published exclusively as an on-line Open Access (OA) quarterly accessible by all AquacultureHub (http://www.aquaculturehub.org) members and registered individuals and institutions. Please visit our website (http://siamb.org.il) for free registration form, further information and instructions.

This transformation from a subscription printed version to an on-line OA journal, aims at supporting the concept that scientific peer-reviewed publications should be made available to all, including those with limited resources. The OA IJA does not enforce author or subscription fees and will endeavor to obtain alternative sources of income to support this policy for as long as possible.

Editor-in-Chief
Dan Mires

Editorial Board
Sheenan Harpaz
Agricultural Research Organization
Beit Dagan, Israel

Zvi Yaron
Dept. of Zoology
Tel Aviv University
Tel Aviv, Israel

Angelo Coloni
National Center for Mariculture, IOLR
Eilat, Israel

Rina Chakrabarti
Aqua Research Lab
Dept. of Zoology
University of Delhi

Ingrid Lupatsch
Swansea University
Singleton Park, Swansea, UK

Jaap van Rijn
The Hebrew University
Faculty of Agriculture
Israel

Spencer Malecha
Dept. of Human Nutrition, Food and Animal Sciences
University of Hawaii

Daniel Golani
The Hebrew University of Jerusalem
Jerusalem, Israel

Emilio Tibaldi
Udine University
Udine, Italy

Copy Editor
Ellen Rosenberg

Published under auspices of
The Society of Israeli Aquaculture and
Marine Biotechnology (SIAMB),
University of Hawaii at Manoa Library
and
University of Hawaii Aquaculture Program in association with
AquacultureHub
http://www.aquaculturehub.org

ISSN 0792 - 156X

© Israeli Journal of Aquaculture - BAMIGDEH.

PUBLISHER:
Israeli Journal of Aquaculture - BAMIGDEH -
Kibbutz Ein Hamifratz, Mobile Post 25210,
ISRAEL
Phone: + 972 52 3965809
http://siamb.org.il
Characterization of *Vibrio alginolyticus* Isolates from Diseased Cultured Gilthead Sea Bream, *Sparus aurata*

T. Akayli*, G. Timur1, B. Aydemir2, A.R. Kiziler2, O. Coskun3, G. Albayrak4, and E. Arican4

1 Department of Fish Diseases, Fisheries Faculty, University of Istanbul, Istanbul, Turkey
2 Department of Biophysics, Cerrahpasa Faculty, University of Istanbul, Istanbul, Turkey
3 Department of Biophysics, Istanbul Faculty, University of Istanbul, Istanbul, Turkey
4 Molecular Biology and Genetic Department, Science Faculty, University of Istanbul, Istanbul, Turkey

(Received 26.8.07, Accepted 15.1.08)

Key words: gilthead sea bream, *Vibrio alginolyticus*, electrophoresis, RAPD

Abstract

Biochemical, pathogenical, antigenical, and molecular characteristics of *Vibrio alginolyticus* isolates from diseased cultured gilthead sea bream juveniles (4 and 20 g) were determined by laboratory challenge experiments. Intraperitonal challenge resulted in development of the disease but immersion did not. Electrophoresis of outer membrane protein (OMP) and lipopolysaccharides (LPS) was performed using sodium dodecyl sulphate poly-acrylamide gel electrophoresis (SDS-PAGE). Molecular typing of *Vibrio* isolates was conducted using random amplification of polymorphic DNA (RAPD). According to SDS-PAGE of surface antigens of the isolates, profiles of both OMP and LPS were heterogeneous. According to RAPD, isolated bacteria varied genetically. The findings reveal differences among *V. alginolyticus* isolates from diseased cultured gilthead sea bream in Turkey.

Introduction

Vibriosis is the most significant disease of cultured sea bream in the Mediterranean (Colorni et al., 1981; Paperna, 1984; Balebona et al., 1998a) and Aegean (Akayli and Timur, 2002, 2004) areas. The widely distributed *Vibrio alginolyticus* is an important pathogen that causes severe vibriosis in cultured gilthead sea bream, *Sparus aurata* L. (Colorni et al., 1981; Balebona et al., 1999a; Zorrilla et al., 2003). However, many strains of *V. alginolyticus* are avirulent and could be used as probiotic strains (Austin et al., 1995). As wide variation exists among the strains, differentiating between harmful and beneficial strains would help to find ways to control infection.

Biochemical characteristics and outer membrane protein (OMP) profiling are valuable methods for typing and differentiating

* Corresponding author. E-mail: takayli@yahoo.com
between bacterial fish pathogens. Lipopolysaccharides (LPS) and OMP are thought to relate to antigenic determinants in gram-negative bacteria (Zorrilla et al., 2003).

Specific, sensitive, and rapid methods for detecting and identifying pathogenic microorganisms are needed to control bacterial infections in intensive fish culture. Random amplification of polymorphic DNA (RAPD) can be used to compare microorganisms at the interspecies and intraspecies levels with high discrimination (Welsh and McClelland, 1990). RAPD has been used for intraspecies characterization of Vibrio harveyi (Pujalte et al., 2003), V. parahaemolyticus (Najiah et al., 2003), and V. vulnificus (Gutacker et al., 2003) isolated from diseased fish.

The few reports on V. alginolyticus infection in cultured gilthead sea bream in Turkey focus on the isolation and identification of the etiological agent (Akayli and Timur, 2002, 2004). Some studies concentrate on the intraspecific characterization of V. alginolyticus strains isolated from cultured sea bream (Balebona et al., 1998b; Zorrilla et al., 2003). However, no attention has been given to the molecular characterization of the bacteria. In the present work, we applied several typing methods to twelve strains of V. alginolyticus isolated from different epizootic outbreaks affecting cultured gilthead sea bream in Turkey and compared those strains with five reference strains.

Materials and Methods

Bacteria. Bacteria were isolated from gilthead sea bream showing clinical signs of vibriosis. The fish were collected from different farms along the southwestern coast of Turkey. The biochemical, pathogenical, antigenical, and molecular properties of twelve bacteria isolates were examined and compared to five representative reference strains (Table 1).

Biochemical analyses. The isolates were recovered on TSA (T-TSA) and TSB (T-TSB) supplemented with 1% NaCl for 2 days at 22°C. The physiological and biochemical characterization of the isolates and the reference strains was carried out using conventional bacteriological methods (Alsina and Blanch, 1994; Holt et al., 1994) and API 20E and API 50CH test kits (MacDonell et al., 1982). Phenotypes of the isolates were compared using approximately 40 morphological, phenotypical, and biochemical tests described by Alsina and Blanch (1994), Holt et al. (1994), and Austin and Austin (1999).

Pathogenicity assay. Four isolates were tested for pathogenicity in sea bream juveniles. For each isolate, two sizes of 30 fish each were challenged. The first size (avg 4 g) was challenged by bacterial suspension in a bath with approximately 10⁷ cells/ml for 60 min. The second (avg 20 g) was injected intraperitonally with the same bacterial dose. There were two replicates of each challenge, a total of 480 fish.

Electrophoresis. Outer membrane protein (OMP) and lipopolysaccharides (LPS) profiles of four of the twelve Turkish isolates were analyzed by electrophoresis using sodium dodecyl sulphate poly-acrylamide gel electrophoresis (SDS-PAGE) in a Mini-Protein II unit (BioRad). OMP and LPS from bacteria cultures of the isolates were obtained in tryptic soy broth (TSB) supplemented with 1.5% NaCl (TSAS) after 24 h incubation at 22°C.
LPS samples were prepared by Proteinase K digestion of whole-cell lysates as described by Hitchcock and Brown (1983). They were fractionated by 18% SDS-PAGE (Laemmli, 1970) and visualized with Silver Stain Plus (Merck-159437) following the manufacturer’s instructions. OMP was determined using the method described by Arda and Ertan (2004). The samples were separated by 12.5% SDS-PAGE (Laemmli, 1970). The gels were fixed and stained with 0.1% Coomassie brilliant blue (Merck-112553).

Random amplification of polymorphic DNA. RAPD was used to characterize the bacteria to the genotype level. Genomic DNA was extracted using the High Pure PCR Template Preparation Kit (Roche Cat. No.1796828). The reaction procedure was modified from Sudheesh et al. (2002), Valle et al. (2002), and Najiah et al. (2003). Two randomly designed 10-mer oligonucleotide primers (Operon Technologies CA/USA), OPC-05 (5’ GATGACCGCC 3’) and OPC-19 (5’ GTTGCCAGCC 3’), were used for amplification. These primers were preliminarily tested in PCR cycles at different temperatures. PCR reactions were run in a PHC-3 thermocycler (Techno, Princeton, N.J.), using the following program: denaturation step at 94ºC for 5 min, 45 cycles consisting of 94ºC for 1 min, 34ºC for 1 min, and 72ºC for 2 min, and a final cycle consisting of 72ºC for 15 min. The RAPD products were electrophoresized using a Fisher Biotech Small Horizontal Gel System.

Discussion

The phenotypic identification of genera and species of Vibrionaceae is problematic, mainly because of great variability of diagnostic phenotypic features such as arginine dihydrolase, indole production, and carbon utilization (Austin and Lee, 1992; Austin et al., 1997). Our isolates had similar biochemical profiles and were all typed as V. alginolyticus. There was a close relationship between our V. alginolyticus isolates and those described by Alsina and Blanch (1994), Holt et al. (1994), and Balebona et al. (1998a). Some of our strains responded negatively to ornithine decarboxylase, indol production, and citrate reaction. In general, however, our results showed that the biochemical profile allows a low degree of discrimination among isolates.

Our pathogenicity results were similar to those of Balebona et al. (1998ab) and Zorrila et al. (2003), i.e., V. alginolyticus is an important pathogen for gilthead sea bream. While Paperna (1984) isolated strains of V. alginolyticus from this fish, he did not perform pathogenicity studies.

There were several differences in OMP profiles, as reported by Zorrilla et al. (2003). Likewise, the LPS profiles were heterogeneous. Although we have no other reports on LPS profiles with which to compare, we conclude that SDS-PAGE and silver staining of purified LPS is a useful tool for determining antigenical properties of isolates.
Table 2. Selected biochemical characteristics of twelve *Vibrio alginolyticus* isolates and one reference strain.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Isolate no.</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Swarming colonies</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>H₂S</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Arginine dihydrolase</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lysine decarboxylase</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Ornithine decarboxylase</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Indole</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Hydrolysis of aesculine</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Methyl red test</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Voges-Proskuer</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Citrate</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Urea</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Acid from salicin</td>
<td>+</td>
<td>v</td>
</tr>
<tr>
<td>Growth on 0% (w/v) sodium chloride</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Growth on 7% (w/v) sodium chloride</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

+ = possesses characteristic, - = lacks characteristic, v = variable results

Fig. 1. SDS-PAGE of (a) outer membrane protein (OMP) and (b) lipopolysaccharides (LPS) from four *Vibrio alginolyticus* strains isolated from diseased gilthead sea bream cultured in Turkey.
Varying genetic profiles were obtained from RAPD analysis in our study, similar to the findings of Sudheesh et al. (2002) for V. alginolyticus isolates from cultured shrimp. Similarly, there were genetic variations in V. harveyi (Pujalte et al., 2003), V. para-haemolyticus (Najiah et al., 2003), and V. vulnificus (Gutacker et al., 2003) isolated from diseased fish.

In conclusion, the isolates of V. alginolyticus were phenotypically and antigenically similar, but molecularly heterogeneous. RAPD was the most discriminating typing method, although biochemical and antigenical profiles were complementary for intraspecific characterization of V. alginolyticus isolates in gilthead sea bream.

Acknowledgements
This study was supported by the Istanbul University Research Fund (project no. 51/230120003). We are grateful to Dr. Sigmund Jensen and Dr. Federico Uruburu, who generously provided the bacterial strains.

References

