The Open Access Israeli Journal of Aquaculture – Bamidgeh

As from January 2010 The Israeli Journal of Aquaculture - Bamidgeh (IJA) will be published exclusively as an on-line Open Access (OA) quarterly accessible by all AquacultureHub (http://www.aquaculturehub.org) members and registered individuals and institutions. Please visit our website (http://siamb.org.il) for free registration form, further information and instructions.

This transformation from a subscription printed version to an on-line OA journal, aims at supporting the concept that scientific peer-reviewed publications should be made available to all, including those with limited resources. The OA IJA does not enforce author or subscription fees and will endeavor to obtain alternative sources of income to support this policy for as long as possible.

Editor-in-Chief
Dan Mires

Editorial Board
Sheenan Harpaz Agricultural Research Organization Beit Dagan, Israel
Zvi Yaron Dept. of Zoology Tel Aviv University Tel Aviv, Israel
Angelo Colorni National Center for Mariculture, IOLR Eilat, Israel
Rina Chakrabarti Aqua Research Lab Dept. of Zoology University of Delhi
Ingrid Lupatsch Swansea University Singleton Park, Swansea, UK
Jaap van Rijn The Hebrew University Faculty of Agriculture Israel
Spencer Malecha Dept. of Human Nutrition, Food and Animal Sciences University of Hawaii
Daniel Golani The Hebrew University of Jerusalem Jerusalem, Israel
Emilio Tibaldi Udine University Udine, Italy

Copy Editor
Ellen Rosenberg

Published under auspices of The Society of Israeli Aquaculture and Marine Biotechnology (SIAMB), University of Hawaii at Manoa Library and University of Hawaii Aquaculture Program in association with AquacultureHub http://www.aquaculturehub.org

© Israeli Journal of Aquaculture - BAMIGDEH.

PUBLISHER:
Israeli Journal of Aquaculture - BAMIGDEH - Kibbutz Ein Hamifratz, Mobile Post 25210, ISRAEL
Phone: + 972 52 3965809 http://siamb.org.il
Abstract
Indian major carp, including *Labeo rohita*, are incapable of biosynthesizing ascorbic acid due to the absence of the enzyme L-gulono-γ-lactone oxidase. To assess their ascorbic acid requirements, improved rohu fingerlings (2.33±0.18 g) were fed one of six semi-purified formulated diets containing 0, 20, 40, 60, 80, or 100 mg ascorbyl-2-polyphosphate (APP) per kg feed for 60 days in water of 28-30°C. Fish fed diets deficient in ascorbic acid had a significantly lower weight gain, poor feed conversion (FCR) and protein efficiency (PER) ratios, lower survival, and behavioral abnormalities such as lethargic movements and poor feed intake. The best FCR and PER were recorded in the 60 mg APP diet. Ascorbic acid in the kidney dropped from 36.62 to 5.09 mg/kg by the end of the experiment. Weight gain analysis by regression indicated that the dietary ascorbic acid requirement for maximum growth and survival of rohu fingerlings can be achieved with 53.5 mg APP incorporated into 1 kg diet.

Introduction
Rohu (*Labeo rohita* Ham.) is the most important cultured species in the freshwater ecosystem of India (Ayyappan and Jena, 1998). Following the classic approach of selective breeding for improved growth, an improved variety of rohu called Jayanti was developed from rohu stocks of the Ganga, Gomati, Yamuna, Sutlej, and Brahmaputra Rivers and the Central Institute of Freshwater Aquaculture (CIFA) farm stock. The fifth generation of improved rohu exhibits 17% growth enhancement over the original farm stock (Reddy, 2003; Das Mahapatra et al., 2007). To achieve its genetic potential for growth, it must be fed a reasonably-priced nutritionally-adequate diet.

Ascorbic acid is a multifunctional indispensable vitamin involved in vital physiologi-
Ascorbic acid requirements of genetically improved rohu

Table 1. Composition of basal diet (46.25% crude protein, 5.0% lipid) to which 20, 40, 60, 80, or 100 mg ascorbyl 2-polyphosphate per kg feed was added.

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casein¹</td>
<td>40</td>
</tr>
<tr>
<td>Dextrin</td>
<td>25</td>
</tr>
<tr>
<td>Gelatin</td>
<td>20</td>
</tr>
<tr>
<td>Vitamin/mineral mixture²</td>
<td>10</td>
</tr>
<tr>
<td>Soya lecithin</td>
<td>2</td>
</tr>
<tr>
<td>Vegetable oil</td>
<td>3</td>
</tr>
</tbody>
</table>

¹Casein (protein content 85.32 %) without vitamin C (Himedia, Mumbai 400086, India)
²Vitamin mineral premix (no vitamin C): 500,000 IU vitamin A; 100,000 IU vitamin D₃; 0.2 g vitamin B₂; 75 units vitamin E; 0.1 g vitamin K; 0.25 g calcium pantothenate; 1.0 g nicotinamide; 0.6 g vitamin B₁₂; 15 g choline chloride; 75 g calcium; 2.75 g manganese; 0.1 g iodine; 0.75 g iron; 1.5 g zinc

Materials and Methods

Fish and rearing system. Three hundred fingerlings (avg 2.33±0.18 g) of improved rohu (Jayanti) were collected from the nursery ponds of the Fish Genetics and Biotechnology Division of CIFA. The fish were acclimated to laboratory conditions in a 700-l tank for one week during which they were fed a diet free of ascorbic acid to deplete ascorbate pools in tissues and body stores as much as possible.

Experimental diets. A basal diet containing no ascorbic acid was prepared as the control (Table 1). Five experimental diets containing various levels of ascorbic acid were prepared by adding 20, 40, 60, 80, or 100 mg ascorbyl 2-polyphosphate (Rovimix Stay C 25%, Hoffmann LaRoche Basel) to one kg feed. The actual amounts of ascorbic acid in the feeds were insignificantly lower than planned. Finely powdered ingredients were thoroughly mixed. Gelatin was added separately after being moistened in a measured volume of lukewarm water. The ingredients were kneaded thoroughly with necessary additions of water and blended to produce dough. The dough was spread on a flat surface, cut into small cubes, and dried in atmospheric temperature in a glass chamber. The prepared diets were kept in air-tight plastic containers and stored in a refrigerator until use. To prevent loss of ascorbic acid during storage, no more than a week’s ration was prepared at a time.

Feeding, sampling, analyses. Fingerlings were stocked in eighteen 25-l glass aquaria (30 x 30 x 30 cm) at a rate of ten fish per aquarium and three replicates per treatment. A constant water level of 22 l was maintained. Feed was provided twice daily (10:00 and 17:00) at a rate of 2% of the body weight per day for 60 days. Fecal matter was carefully siphoned from the water every day. Water was exchanged at a daily rate of 75% to maintain water quality. Replenishing water passed through a bolting silk cloth (no. 29) to prevent entry of phyto and zooplankton. Water temperature, recorded daily, was 28-30°C. Dissolved
oxygen, pH, etc., were measured weekly following standard methods (APHA, 1989).

Every week, fish were removed from the aquaria, anesthetized in MS-222 (100 mg/l), measured, and weighed. After sampling, fish were dipped into a dilute KMnO4 solution (0.2%) to prevent bacterial and fungal infestation. The voluntary feed intake (VFI), growth (percent body weight gain), and feed conversion ratio (FCR) were calculated and the feed quantity was adjusted accordingly.

At the end of the feed trial, the fingerlings were removed, anesthetized in MS-222 (100 mg/l), measured, and weighed. Kidney samples were preserved at -80°C for subsequent analysis of ascorbic acid. Since the kidney (head and trunk) is the most important storage organ for ascorbic acid in fish (Gabaudan and Verlhac, 2001), this tissue was chosen to analyze ascorbic acid content and determine the vitamin C requirement of the species. The ascorbic acid content of the kidney of fish fed the control diet was monitored weekly during the 60-day trial to determine the changes that would occur in fish fed a diet free of ascorbic acid.

Results

In the control and 20 mg treatment, behavioral abnormalities including lethargic movements and poor feed intake were observed 38 days into the feeding trial. Morphological changes were seen in about 30% of the fish in these groups, including caudal fin erosion and discoloration (dark black) of the body. These abnormalities were not apparent in other groups.

Survival was highest (95%) in the 40 mg group, followed by the 60 and 80 mg groups (90%), 100 mg (85%) group, and 20 mg group (80%); the lowest survival (65%) was in the control (Fig 1). The best growth, FCR, and PER were obtained in the 60 mg treatment (Table 2). The ascorbic acid content of the kidney in the control group dropped consistently with time (Fig. 2). At the end of the trial, the ascorbic acid content in the kidney was lowest in the control and rose with the increasing level of ascorbyl 2-polyphosphate (Fig. 3). The ascorbic acid content in the kidney positively correlated with growth to the 60 mg level and then decreased. Using regression analysis for weight gain, FCR, and PER, the dietary requirement for the genetically improved rohu fingerlings was 53.5 mg ascorbyl 2-polyphosphate per kg feed.

Discussion

Results indicate the need for dietary ascorbic acid for survival and normal growth of genetically improved rohu fingerlings. The requirement for optimal growth was 53.5 mg/kg diet, as provided in the 60 mg treatment. In common carp larvae, the dietary requirement was 45 mg ascorbic acid/kg feed, based on growth performance, while the required level of ascorbic acid stored in tissues was higher, i.e., 350 mg ascorbic acid/kg diet (Gouillou-Coustans et al., 1998). It is expected that tissue levels reach a maximum or saturation level beyond which they do not increase with further increases in dietary concentration; the excess intake is excreted or metabolized (Cho and Cowey, 1993; Gouillou-Coustans and Kaushik, 2001). In newly hatched Cirrhus mrigala, an Indian major carp, fed purified diets with graded levels of crystalline ascorbic acid,
the optimum requirement was 650-700 mg ascorbic acid/kg feed based on weight gain, mortality, and behavioral and morphological criteria (Mahajan and Agrawal, 1980). This level appears to be on the high side, possibly due to the use of crystalline ascorbic acid which is an unstable form of vitamin C. Using enriched zooplankton with ascorbyl palmitate, the ascorbic acid requirement of rohu larvae was 1409 mg/kg (Mitra and Mukhopadhyay, 2003). This also appears to be high, possibly due to the increasing requirements of larvae as they grow (Mahajan and Agrawal, 1980). Recently Mishra et al. (2007) reported better immunity, growth, and survival in rohu fingerlings after feeding diets containing 500 mg/kg ascorbic acid for eight weeks. Their results agree with Sahoo and Mukherjee (2003) that high dietary vitamin C enhanced the non-specific immunity of fish, including an enhanced phagocyte ratio, increased serum lysozyme activity, and protection against Aeromonas hydrophila infection.

In channel catfish, there is no significant

Table 2. Weight gain (%), specific growth rate (SGR), feed conversion ratio (FCR), and protein efficiency ratio (PER) in rohu fingerlings fed diets with different amounts of ascorbyl-2-polyphosphate (vitamin C)

<table>
<thead>
<tr>
<th>Vitamin C (mg/kg diet)</th>
<th>0</th>
<th>20</th>
<th>40</th>
<th>60</th>
<th>80</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wt gain (%)</td>
<td>54.75±0.55<sup>a</sup></td>
<td>65.3±7.4<sup>ab</sup></td>
<td>68.4±6.3<sup>ab</sup></td>
<td>77.5±5.95<sup>b</sup></td>
<td>60.17±6.17<sup>ab</sup></td>
<td>56.9±1.0<sup>a</sup></td>
</tr>
<tr>
<td>SGR</td>
<td>0.78±0.01<sup>a</sup></td>
<td>0.84±0.08<sup>ab</sup></td>
<td>0.87±0.12<sup>ab</sup></td>
<td>0.95±0.1<sup>b</sup></td>
<td>0.86±0.07<sup>ab</sup></td>
<td>0.75±0.01<sup>a</sup></td>
</tr>
<tr>
<td>FCR</td>
<td>2.77±0.08<sup>a</sup></td>
<td>2.38±0.15<sup>ab</sup></td>
<td>2.31±0.24<sup>ab</sup></td>
<td>2.13±0.13<sup>b</sup></td>
<td>2.59±0.11<sup>ab</sup></td>
<td>2.76±0.04<sup>a</sup></td>
</tr>
<tr>
<td>PER</td>
<td>0.55±0.01<sup>a</sup></td>
<td>0.64±0.04<sup>ab</sup></td>
<td>0.66±0.07<sup>ab</sup></td>
<td>0.71±0.04<sup>b</sup></td>
<td>0.58±0.02<sup>ab</sup></td>
<td>0.55±0.01<sup>a</sup></td>
</tr>
</tbody>
</table>

Values in a row with different superscripts differ significantly at p<0.05.
difference in dietary ascorbic acid requirements when crystalline and polyphosphate forms of ascorbic acid are used (Andrews and Murai, 1975; Murai et al., 1978). In tilapia (Oreochromis niloticus), however, the polyphosphate form of ascorbic acid is more effective than the crystalline form as Soliman et al. (1994) found the requirement to be 1250 mg crystalline ascorbic acid/kg for normal growth and feed efficiency while Abdelghany (1996) found that fingerlings require only 50 mg ascorbic acid/kg body weight when fed the polyphosphate form. The loss of activity in crystalline ascorbic acid during manufacture and storage of feed exceeds that in other forms of ascorbic acid, such as coated (Marchetti et al., 1999), sulfate (Shiau and Hsu, 1993), monophosphate (Shiau and Hsu, 1993), and polyphosphate (Volker and Fenster, 1994). However, ascorbyl polyphosphate proved to be a highly stable form of vitamin C, resistant to leaching and oxidation.

Fig. 2. Ascorbic acid contents in kidneys of control fish at weekly intervals throughout the experiment.

Fig. 3. Ascorbic acid contents in kidneys of experimental fish at the end of the experiment.
during feed processing and storage (Moreau et al., 1998). Ascorbyl polyphosphate in fish feeds is stable during feed processing and highly bioavailable. The polyphosphate protects the vitamin C from oxidation and is easily acted upon by phosphatases in the digestive tract to make the ascorbic acid available.

Acknowledgements
The authors thank the Director of the Institute for providing the necessary support and the Head of the Genetics and Biotechnology Division for providing the improved rohu fingerlings. We thank Dr. J. Gabaudan, Vitamin and Fine Chemicals Research, F. Hoffman Roche Ltd., France, for generously supplying the ascorbyl 2-polyphosphate.

References
Mishra C.K., Das B.K., Mukherjee S.C. and J. Pradhan, 2007. Effects of dietary vitamin C on immunity, growth and survival of Indian

