Intestinal Parasites of the Pacific

Ethan A. Small BA, Alan D. Tice MD, Xiaotian Zheng MD, PhD

Abstract
Information about intestinal parasites in Hawaii and the Pacific is not current. We reviewed reports on fecal samples obtained from two laboratories and found recovery rates of 9.3% in Hawaii, 14.2% in Saipan, 18% in Rota and 9.5% in Guam. The most frequently identified parasites were Blastocystis hominis (7.6%), Giardia lambia (1.2%), and Entamoeba coli (0.7%). Although the incidence and types of organisms have changed with time, physicians in Hawaii should continue looking for intestinal parasites.

Introduction
Intestinal parasites have been a scourge of mankind for millennia. They have adapted to numerous habitats and hosts while spreading throughout the world. Improvements in sanitation and medications, however, have interrupted their life cycles in many instances. Consequently, they have lost their foothold in numerous countries. While the impact of modern medicine has been dramatic in Hawaii, intestinal parasites remain a common cause of disease. Continued immigration of Pacific Island and Asian peoples and travelers bring strongyloids, hookworm, and ascars while possibly serving as reservoirs for transmission. Parasites may remain asymptomatic for years or may present with symptoms outside the gastrointestinal tract. Some of the most frequently recognized parasites in recent years include Cryptosporidium parvum and Blastocystis hominis; they remain threats because of their presence in natural reservoirs and public water supplies. The chances of eradicating these organisms are small. Both are thought to be transmitted via a fecal-oral route. C. parvum has survived in public water supplies due to its small size (passes through <1um filters) and resistance to chlorination. Controversy exists as to whether B. hominis is a pathogenic versus commensal organism. However, outbreaks with symptoms have been reported.

The Center of Disease Control estimated a parasite burden of 20% in the United States during 1987. With advances in sanitation and medication, surveillance and reporting activities were reduced, such that there is little record of the incidence of intestinal parasites or changes that have occurred since. In addition, “new” microorganisms are being recognized that are not visible with standard ova and parasite diagnostic tests. These require special stains and identification techniques in the laboratory.

Reports of intestinal parasites in Hawaii or other Pacific Islands are scarce. Prior publications in 1961 and 1975 indicated 12 and 13% recovery rates. The 1975 study was primarily of school aged children in Oahu with the majority of positive samples occurring in foreign-born subjects. Information about parasitic diseases in other Pacific Islands has been limited to reports of small outbreaks rather than survey results. Old reports do not indicate the distribution of cryptosporidium, microsporidium or blastocystis as they have only recently been identified and reported as pathogens.

Because of the presence of endogenous parasites in Hawaii and the potential for importation from other islands in the Pacific, we set out to gather information from two laboratories in Oahu that perform a large number of tests for ova and parasites from specimens collected in Hawaii as well as other islands.

Methods
MedLINE was searched for information about intestinal parasites. Attempts were made to contact the ministries of health in Hawaii, Australia, New Zealand, Saipan, and Guam plus the London School of Hygiene and Tropical Medicine, the Center for Disease Control, the World Health Organization, and the Swiss Tropical Institute through web pages and e-mail.

Laboratory information was gathered from Diagnostic Laboratory Services (DLS), a commercial laboratory based in Honolulu and from the microbiology department at Tripler Army Medical Center (TAMC). DLS processes samples from all the islands of Hawaii and from Guam, Saipan, and Rota. It was not possible to determine whether samples submitted by Hawaii physicians were taken from patients residing outside of Hawaii. TAMC receives samples from military bases all over the Pacific; however, samples were not identified by geographic source. Both laboratories are certified by the College of American Pathologists for ova and parasite examinations. DLS screens for giardia in all samples, but does does not routinely look for cryptosporidium or cyclospora without a special request. TAMC routinely screens for giardia in all samples, and uses Direct Fluorescence Antibody (DFA) stains to screen for giardia and cryptosporidium in all children under five years old. Identification of blastocystis, hookworm, taenia, and Entamoeba sp.
was part of a routine parasitology workup at both laboratories. This included examination of stools with standard concentration and permanent staining methods. Laboratory records for stool samples collected for ova and parasite examinations were accessible from October 1, 2001 until March 1, 2002 through DLS, and November 2001 through February 2002 for TAMC. It was not possible to determine the reason for ordering tests or the frequency with which fecal ova and parasite examinations were done in any specific population.

Information about specimens was collected without patient identifiers. The study was considered exempt from the Department of Health and Human Services Regulation regarding patient confidentiality and informed consent by the Committee of Human Studies at the University of Hawaii.

Results
Findings for specimens reported are displayed in table 1. Results demonstrate a percentage of parasite recovery in all samples from Saipan (14.2%), Guam (9.5%), Rota (18.5%) and Hawaii (9.3%). The percentage of positive results was 11.0% in DLS samples compared to 7.4% in samples from TAMC. Personal communication revealed that the majority of TAMC samples are from active duty, active reserve, retired military personnel or their families.

The types of parasites identified by the DLS and TAMC labs are also presented in table 1. The parasite recovered most frequently was B. hominis found in 60.9% of positive stool samples in Hawaii and 50-77% in other Pacific islands. Giardia was only recovered in 10.7% of positive Hawaii samples and 0-50% in non-Hawaii Pacific Island samples. Entamoeba histolytica was found in samples submitted from physicians in Hawaii. Cryptosporidium was not reported in any sample from DLS or TAMC. Ascaris, necator, taenia, trichuris and other helminths were infrequent findings. Strongyloides stercoralis was only identified in one sample from Guam and one from Saipan.

Discussion
The system used in this study is not able to determine the true incidence or prevalence of intestinal parasites in the different populations studied. To do so accurately would require large surveys of the peoples of the regions reported which would not be practical. Furthermore, it was not possible to determine whether samples submitted from geographic regions represented follow-up samples from individual patients, thus falsely raising or lowering any calculations of prevalence or incidence. However, the data collected does provide current information about the primary pathogens recovered from various regions in the Pacific, allows for rough comparisons of recent results with old surveys, and demonstrates trends which may appear to be taking place over the last 27 years. Conclusions based on this data are limited in that the criteria for collecting the reported specimens are not clear and undoubtedly vary from one source to another.

There has been an apparent decline in the identification of ova and parasites compared to the older studies of 1974 and 1987. This likely reflects improved sanitation, public health measures, and modern anti-parasitic medications. Giardia was reported to be the most frequently identified intestinal parasite in the United States. It was found in 7.2% of all reported stool samples in 1992 with the greatest recovery rate occurring in the Midwest. Desowitz identified giardia in 4.1% of samples taken from Hawaii school aged children in 1974. A recent overall decrease in recovery may be due to greater public awareness of giardia in outdoor waters and travel safety measures. Children ages 0-5 years old, as used in Desowitz’s study, demonstrate a higher incidence than other age groups.

The prevalence of giardia in the United States may be underestimated since only 20-50% of patients show signs of illness and patients may not shed cysts in their stool on a daily basis. It is unlikely that giardia is underreported in this study as DLS and TAMC routinely screen for the protozoan during standard ova and parasite detection procedures.

The recovery of Strongyloides stercoralis in Guam and Saipan reinforces the need to look for parasites in immigrants from these regions. The nematode is found world wide, but primarily in tropical climates. Patients may remain asymptomatic carriers for many years. Serious disease may occur in asymptomatic patients who later become immunocompromised. Strongyloides may also cause a variety of extra-intestinal symptoms including cough, pruritis, and weight loss. Hyperinfective strongyloidiasis is often fatal in immunocompromised individuals; frequently leading to acute respiratory distress syndrome and E. coli septicemia. It may be beneficial to screen for Strongyloides in patients who are HIV positive or about to begin immunosuppressive therapy, particularly if they originate from or traveled to an endemic region.

The discovery of B. hominis as the most frequently recovered parasite is of interest. It was reported in only 2.6% of all stool specimens in the 1987 CDC national survey. Desowitz did not report B. hominis in 1975, likely due to differences in laboratory staining and reporting requirements. Over the last 25 years, numerous studies have been undertaken to determine whether B. hominis is responsible for gastrointestinal disease. Amin recorded B. hominis as the most frequently identified parasite (23%) recovered from 2896 patients in the United States during 2000. Doyle reported diarrhea, flatulence, and abdominal pain in a group of 143 patients with B. hominis as the only identified organism on studies for bacterial and para-
Table 1.—Percent recovery of parasites from positive stool samples submitted for ova and parasites to Tripler Army Medical Center (TAMC) and Diagnostic Laboratory Services (DLS). Samples from DLS were collected between October 1, 2001 and March 1, 2002. Samples from TAMC were collected between November 27, 2001 and February 27, 2002.

<table>
<thead>
<tr>
<th>Parasite</th>
<th>Stool Samples from TAMC, N=277</th>
<th>Stool Samples from Diagnostic Laboratory Services</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hawaii, N=2394</td>
<td>Guam, N=652</td>
</tr>
<tr>
<td>Total Number Positive Stool Samples</td>
<td>20</td>
<td>225</td>
</tr>
<tr>
<td>Blastocystis hominis</td>
<td>8 of 20 (40.0%)</td>
<td>137 of 225 (60.9%)</td>
</tr>
<tr>
<td>Entamoeba coli</td>
<td>2 of 20 (10.0%)</td>
<td>19 of 225 (8.4%)</td>
</tr>
<tr>
<td>Entamoeba histolytica</td>
<td>0 of 20 (0.0%)</td>
<td>13 of 225 (5.8%)</td>
</tr>
<tr>
<td>Hymenolepis nana</td>
<td>0 of 20 (0.0%)</td>
<td>1 of 225 (0.4%)</td>
</tr>
<tr>
<td>Giardia sp</td>
<td>8 of 20 (40.0%)</td>
<td>24 of 225 (10.7%)</td>
</tr>
<tr>
<td>Ascaris sp.</td>
<td>1 of 20 (5.0%)</td>
<td>2 of 225 (0.9%)</td>
</tr>
<tr>
<td>Hookworm</td>
<td>0 of 20 (0.5%)</td>
<td>6 of 225 (2.7%)</td>
</tr>
<tr>
<td>Strongyloides</td>
<td>0 of 20 (0.0%)</td>
<td>0 of 225 (0.0%)</td>
</tr>
<tr>
<td>Trichuris trichiura</td>
<td>1 of 20 (5.0%)</td>
<td>1 of 225 (0.4%)</td>
</tr>
<tr>
<td>Taenia sp.</td>
<td>0 of 20 (0.0%)</td>
<td>7 of 225 (3.1%)</td>
</tr>
</tbody>
</table>
Cyclosporiasis was not reported in our datasets even though there was a 0.2% recovery rate from stool samples submitted to diagnostic laboratories in the 1987 national survey. Cryptosporidium has received more attention as a cause of chronic, profuse watery diarrhea in immunocompromised populations. The organism has also been the cause of several large waterborne outbreaks of gastroenteritis. It has a low infectious dose, is capable of passing through many water purification filters, and is resistant to chlorination treatments. Detection for cryptosporidium is also still suboptimal in many laboratories. Currently, DLS does not routinely screen for cryptosporidium, cyclospora, or microsporidia. Special requests must be made in order to identify these organisms in submitted stool samples. TAMC routinely screens for cryptosporidium only in children under 5 years old.

The discrepancy between the recovery rates in TAMC and DLS samples is best explained by the different populations the laboratories service. Samples submitted to TAMC are primarily from military and retired military with dependents who reside in Hawaii. In contrast, the samples from DLS are likely from native residents or from immigrants from other islands in the Pacific.

We are unable to compare the recovery rates of intestinal parasites between Hawaii and non-Hawaii Pacific Islands. However, limited resources in sanitation and medication, as well as the natural presence of these pathogens in developing nations give these regions a relatively high prevalence of intestinal parasites.

Intestinal parasites continue to be a challenge to clinicians in Hawaii. Although the classic pathogens are recovered less frequently, they may continue to be imported by recent or past immigrants. The situation is further complicated by the ability of some parasites to produce no intestinal symptoms and to mimic other diseases for which parasites are not suspected. Patients with acute or chronic intestinal symptoms should be studied for parasite infections as part of a complete work-up. Patients without symptoms who spent significant time in Pacific Islands other than Hawaii also benefit from ova and parasite screening.

Acknowledgments

We gratefully acknowledge the assistance of Mr. Bardwell J. Eberly, Department of Pathology & ALS at Tripler Army Medical Center for his contributions in providing data for this article.

References

Until There’s A Cure There’s The American Diabetes Association

HAWAII MEDICAL JOURNAL, VOL. 62, OCTOBER 2003