The Open Access Israeli Journal of Aquaculture – Bamidgeh

As from January 2010 The Israeli Journal of Aquaculture - Bamidgeh (IJA) will be published exclusively as an on-line Open Access (OA) quarterly accessible by all AquacultureHub (http://www.aquaculturehub.org) members and registered individuals and institutions. Please visit our website (http://siamb.org.il) for free registration form, further information and instructions.

This transformation from a subscription printed version to an on-line OA journal, aims at supporting the concept that scientific peer-reviewed publications should be made available to all, including those with limited resources. The OA IJA does not enforce author or subscription fees and will endeavor to obtain alternative sources of income to support this policy for as long as possible.

Editor-in-Chief
Dan Mires

Editorial Board

Rina Chakrabarti Aqua Research Lab, Dept. of Zoology, University of Delhi, India

Angelo Colorni National Center for Mariculture, IOLR, Eilat, Israel

Daniel Golani The Hebrew University of Jerusalem, Israel

Hillel Gordin Kibbutz Yotveta, Arava, Israel

Sheenan Harpaz Agricultural Research Organization, Beit Dagan, Israel

Gideon Hulata Agricultural Research Organization Beit Dagan, Israel

George Wm. Kissil National Center for Mariculture, IOLR, Eilat, Israel

Ingrid Lupatsch Swansea University, Singleton Park, Swansea, UK

Spencer Malecha Dept. of Human Nutrition, Food & Animal Sciences, CTAHR, University of Hawai‘i

Constantinos Mylonas Hellenic Center for Marine Research, Crete, Greece

Amos Tandler National Center for Mariculture, IOLR, Eilat, Israel

Emilio Tibaldi Udine University, Udine, Italy

Jaap van Rijn Faculty of Agriculture, The Hebrew University of Jerusalem, Israel

Zvi Yaron Dept. of Zoology, Tel Aviv University, Israel

Copy Editor Miriam Klein Sofer

Published under auspices of
The Society of Israeli Aquaculture and Marine Biotechnology (SIAMB)
&
University of Hawai‘i at Mānoa
&
AquacultureHub
http://www.aquaculturehub.org

ISSN 0792 - 156X

© Israeli Journal of Aquaculture - BAMIGDEH.

PUBLISHER:

Israeli Journal of Aquaculture - BAMIGDEH - Kibbutz Ein Hamifratz, Mobile Post 25210, ISRAEL
Phone: + 972 52 3965809
http://siamb.org.il
Effects of Dietary Lecithin, Nucleoside, and Krill Supplementation to a Fishmeal Based Diet on Growth and Feed Utilization of Sharpsnout Sea Bream (*Diplodus Puntazzo*)

Stavros Chatzifotis¹*, Manuel Sala-Pérez² Elena Guerra¹, Lionel Santos Rodríguez¹, Ana Ruiz-Navarro³

¹ Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, P.O. Box 2214, Heraklion 71003, Crete, Greece
² Institute of Environment, Health and Societies, Brunel University London, UB8 3PH Uxbridge, UK
³ Department of Zoology and Physical Anthropology, University of Murcia, 30100, Murcia, Spain

Keywords: *Diplodus puntazzo*; dietary lecithin; nucleosides; krill; specific growth rate; feed conversion ratio; daily feed intake; whole-body composition

Abstract

The aim of this 96 day feeding trial was to investigate the effects of the addition of different combinations of dietary lecithin, nucleosides, and krill to a fishmeal-based diet on the growth, feed utilization, feed consumption, and body composition of sharpsnout sea bream (*Diplodus puntazzo*). Six hundred (600) fish (average weight 21.21 ± 0.06 SD g) were divided into 8 groups (triplicate treatments) and fed eight isoenergetic fishmeal-based diets, (C-control, L-lecithin, N-nucleosides, K-krill, L+N-lecithin+nucleosides, N+K-nucleosides+krill, L+K-lecithin+krill, L+N+K-lecithin+nucleosides+krill). The effects of the dietary regimes were evaluated in terms of specific growth rate (SGR), feed conversion ratio (FCR), daily feed intake (DFI), and whole body chemical composition (moisture, crude ash, crude protein and crude lipid). At the end the trial the fish had tripled their initial weight. SGR, FCR and DFI were 1.17 -1.24 %, 0.95 -1.01, and 1.03-1.14% respectively. Although differences were observed between some groups, none of the tested feed additives improved SGR, FCR, and DFI, compared to the control diet. Analysis of whole body proximate composition showed that moisture, crude ash, crude protein, and crude lipid ranged 61.45-64.00%, 3.96-4.26%, 15.44-17.26% and 14.87-18.82% respectively. Crude lipid concentration was higher in whole body of

* Corresponding author. Telephone: +30 2810-337873; Email: stavros@her.hcmr.gr
fish fed the nucleoside supplemented diet compared to control, lecithin, and krill groups. No other effects of the dietary regime on the whole body composition of sharpshout sea bream were observed.

Introduction

Sharpsnout sea bream (*Diplodus puntazzo*) is a benthopelagic marine fish belonging to the Sparidae family exhibiting gregarious behaviour and omnivorous feeding. They are found from the Bay of Biscay to the coasts of Sierra Leone, the Mediterranean and Black Seas (Bauchot & Hureau 1986). Although sharpsnout sea bream have been cultured for over 30 years - albeit in small quantities in the Mediterranean Sea - knowledge of nutrient requirements derives from studies on protein and energy requirements (Hernández et al. 2001; Coutinho et al. 2012) and replacement of fish meal and oil by vegetable meal and oils (Hernández et al. 2007; Piedecausa et al. 2007) as well as studies dealing with feed preference and macronutrient selection by this species (Torrejón Atienza et al. 2004; Vivas et al. 2006; Almada-Pagán et al. 2008).

The present study was concerned with evaluation of the effects of feed additives, namely lecithin, nucleosides and krill on the growth and feed utilization of sharpsnout sea bream, as these additives had a positive effect on growth and feed consumption. Dietary lecithin has been effective in increasing growth of the larvae of fish such as pikeperch (*Sander lucioperca*) and juvenile rainbow trout (*Oncorhynchus mykiss*) (Tocher et al. 2008). It has also been suggested that lecithin could be a suitable substitute for fish oil in the diet of rainbow trout (Liu et al. 2004). Nucleosides have strong effects on diet palatability and feeding behavior and improve growth (Peng and Gatlin 2006). Krill, a feeding stimulant (Gaber 2005; Kader et al. 2010) has improved growth rates in fish such as Nile tilapia *Oreochromis niloticus*, (Gaber 2005), yellowtail *Seriola quinquergadiata*, (Kofuji et al. 2006), Atlantic salmon *Salmo salar*, (Olsen et al. 2006), Atlantic halibut *Hippoglossus hippoglossus*, and Atlantic cod *Gadus morhua*, (Tibbetts et al. 2011).

Materials and Methods

600 fish (average weight 15-25g), obtained by means of mesocosm hatchery technology from a unique broodstock (Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Crete, Greece), were selected for the experiment. The fish were collectively weighed and randomly distributed into 24 indoor 500L tanks (density of 25 fish per tank), with 3 replicates per treatment. Water was supplied from a borehole (salinity 39 ‰, temperature 21-22 °C). Light conditions in all tanks was identical (12:12). A net was placed over the tanks to prevent fish from escaping. Eight isoenergetic diets were formulated using different combinations of dietary lecithin, krill and nucleosides (Table 1).
Feed mixer, moistened by adding 50% water, and then converted into pellets by a mincing machine. The pellets were manually cut and shaped, air dried at 35 ºC for 24 h. The entire experiment lasted 97 days and during this period the fish were hand fed twice a day (900am and 1500pm) until apparent satiation, taking care not to waste food. The fish were collectively weighed per tank at the beginning of the experiment, every month during the trial, and at the end of the experiment, after 24 h of starvation. They were slightly anaesthetized with 2-phenoxyethanol at a concentration of 150 ppm.

At the end of the experiment, the fish were euthanized with an overdose of anesthetic. A random subsample of 5 fish per tank was eviscerated to record hepatic mass. 5 more fish per tank were crushed for subsequent analysis of whole-body chemical composition. All samples were stored at -20 ºC until the analysis. Following directives of AOAC (1997) proximate composition analysis, was performed: Moisture: dryness at 90ºC until constant weight; Ash: burning in a furnace at 600 ºC for 7 h; Crude proteins:...
Chatzifotis et al.

Dumas method with conversion factor 6.25 (Dumas JBA, 1831); Crude lipids: methanol/chloroform extraction (Folch et al. 1957). The indices of:

- specific growth rate (SGR = ((ln (final body weight - initial body weight))/ days of the experiment) × 100),
- feed conversion ratio (FCR = feed consumed (g) / wet weight gain (g)),
- daily feed intake (DFI = (daily feed consumed (g) / average total weight (g)) × 100) and
- hepatosomatic index (HSI = (liver weight (g) / whole body weight (g)) × 100)

were estimated for each treatment.

To find differences between treatments, non-parametric ANOVA and post-hoc t-test, using the statistical package SPSS v. 15.0 were conducted. The significance level selected was $P<0.05$.

Results

Over the feeding period the fish tripled their body weight reaching a final weight of c.a. 70g. Increase in the weight of fish over the whole experimental period is shown in Figure 1.

![Figure 1. Changes in weight per fish (sharpsnout sea bream) with the different experimental treatments. L: lecithin; N: nucleosides; K: krill.](image)

The indexes of SGR, FCR and DFI varied 1.17-1.24%, 0.95-1.01% and 1.03-1.14% respectively. No differences were observed in final fish weight, SGR, FCR and DFI between the control diet and the experimental diets. However, final fish weight was lower in the nucleosides+krill treatment compared to the nucleosides treatment and in the lecithin+krill treatment compared to the nucleosides+krill treatment (Table 2). SGR was lower with the krill treatment compared to the nucleosides treatment. FCR was lower with the nucleosides+krill treatment compared to the nucleosides treatment. No differences were observed in DFI and HSI among treatments.

Analysis of whole body proximate composition showed that moisture, crude ash, crude protein and crude lipid varied at 61.45-64.00%, 3.96-4.26%, 15.44-17.26% and 14.87-18.82% respectively (Table 3.) Lipid content of fish fed on the nucleoside treatment was higher compared to the control, krill, and lecithin treatments. The values of the remaining components, for proteins, moisture, and ash were not significantly different among diets.
Table 2. Weight (g), SGR (% per day), FCR, DFI (% per day) and HSI (% body weight) of sharpsnout sea beam fed on different additives. C: control; L: lecithin; N: nucleosides; K: krill.

<table>
<thead>
<tr>
<th>Factor</th>
<th>C</th>
<th>L</th>
<th>N</th>
<th>K</th>
<th>L+N</th>
<th>N+K</th>
<th>L+K</th>
<th>L+N+K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial weight</td>
<td>21.21 ± 0.06</td>
<td>21.19 ± 0.10</td>
<td>21.23 ± 0.06</td>
<td>21.49 ± 0.51</td>
<td>21.16 ± 0.12</td>
<td>21.24 ± 0.85</td>
<td>21.47 ± 0.33</td>
<td>21.2 ± 0.05</td>
</tr>
<tr>
<td>Final weight</td>
<td>71.27 ± 1.41<sup>ab</sup></td>
<td>69.27 ± 3.22<sup>ab</sup></td>
<td>72.03 ± 2.07<sup>bc</sup></td>
<td>67.71 ± 1.11<sup>ab</sup></td>
<td>69.67 ± 2.92<sup>ab</sup></td>
<td>65.16 ± 4.07<sup>b</sup></td>
<td>72.19 ± 1.43<sup>bc</sup></td>
<td>69.77 ± 1.40<sup>ab</sup></td>
</tr>
<tr>
<td>SGR<sup>1</sup></td>
<td>1.24 ± 0.03<sup>ab</sup></td>
<td>1.22 ± 0.05<sup>ab</sup></td>
<td>1.23 ± 0.01<sup>a</sup></td>
<td>1.17 ± 0.04<sup>b</sup></td>
<td>1.20 ± 0.06<sup>ab</sup></td>
<td>1.15 ± 0.03<sup>ab</sup></td>
<td>1.25 ± 0.02<sup>ab</sup></td>
<td>1.23 ± 0.02<sup>ab</sup></td>
</tr>
<tr>
<td>FCR<sup>2</sup></td>
<td>0.95 ± 0.02<sup>ab</sup></td>
<td>0.93 ± 0.02<sup>ab</sup></td>
<td>0.95 ± 0.02<sup>b</sup></td>
<td>0.95 ± 0.02<sup>ab</sup></td>
<td>0.99 ± 0.07<sup>ab</sup></td>
<td>0.97 ± 0.05<sup>a</sup></td>
<td>0.98 ± 0.05<sup>ab</sup></td>
<td>1.01 ± 0.07<sup>ab</sup></td>
</tr>
<tr>
<td>DFI<sup>3</sup></td>
<td>1.08 ± 0.02</td>
<td>1.07 ± 0.03</td>
<td>1.06 ± 0.03</td>
<td>1.03 ± 0.01</td>
<td>1.10 ± 0.05</td>
<td>1.05 ± 0.07</td>
<td>1.10 ± 0.05</td>
<td>1.14 ± 0.06</td>
</tr>
<tr>
<td>HSI<sup>4</sup></td>
<td>1.86 ± 0.44</td>
<td>1.80 ± 0.31</td>
<td>1.88 ± 0.32</td>
<td>1.75 ± 0.27</td>
<td>1.98 ± 0.34</td>
<td>1.66 ± 0.48</td>
<td>1.45 ± 0.21</td>
<td>1.43 ± 0.27</td>
</tr>
</tbody>
</table>

¹ SGR: Specific Growth Rate; ² FCR: Feed Conversion Ratio; ³ DFI: Daily Feed Intake; ⁴ HSI: Hepatosomatic Index

Values are means ± standard deviation. Different letters denote significantly different groups at p < 0.05.

Table 3. Whole-body composition of fish (%) from the different treatments after the experiment of sharpsnout sea beam. C: control; L: lecithin; N: nucleosides; K: krill.

<table>
<thead>
<tr>
<th>Component</th>
<th>C</th>
<th>L</th>
<th>N</th>
<th>K</th>
<th>L+N</th>
<th>N+K</th>
<th>L+K</th>
<th>L+N+K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>64.00 ± 1.11</td>
<td>63.80 ± 2.27</td>
<td>62.09 ± 2.34</td>
<td>62.45 ± 1.31</td>
<td>62.98 ± 1.32</td>
<td>61.88 ± 1.42</td>
<td>61.31 ± 1.09</td>
<td>63.31 ± 1.60</td>
</tr>
<tr>
<td>Ash</td>
<td>3.96 ± 0.80</td>
<td>3.89 ± 0.53</td>
<td>4.00 ± 0.47</td>
<td>4.26 ± 0.78</td>
<td>4.14 ± 0.53</td>
<td>4.60 ± 0.93</td>
<td>4.12 ± 0.17</td>
<td>4.03 ± 0.15</td>
</tr>
<tr>
<td>Proteins</td>
<td>15.44 ± 0.69</td>
<td>16.30 ± 3.24</td>
<td>12.68 ± 3.17</td>
<td>17.55 ± 1.49</td>
<td>17.04 ± 1.03</td>
<td>18.33 ± 0.39</td>
<td>17.23 ± 8.76</td>
<td>17.26 ± 0.85</td>
</tr>
<tr>
<td>Lipids</td>
<td>14.99 ± 0.56<sup>b</sup></td>
<td>15.09 ± 0.37<sup>b</sup></td>
<td>18.82 ± 2.08<sup>a</sup></td>
<td>14.87 ± 0.42<sup>b</sup></td>
<td>14.53 ± 1.78<sup>ab</sup></td>
<td>15.80 ± 1.02<sup>ab</sup></td>
<td>15.98 ± 0.95<sup>ab</sup></td>
<td>15.21 ± 1.89<sup>ab</sup></td>
</tr>
</tbody>
</table>

Values are means ± standard deviation. Different letters denote significantly different groups at p < 0.05.
Discussion

We found that dietary lecithin, nucleosides, and krill do not affect the growth and other biological parameters such as specific growth rate, feed conversion ratio, daily feed intake, hepatosomatic index and mortality of sharpsnout sea bream compared to a control fishmeal-based diet. Furthermore, lecithin and krill did not show any effect on whole-body content of moisture, ash, proteins and lipids.

A number of studies investigating the effect of dietary lecithin have shown an improvement in fish growth specifically with the larvae of pikeperch (*Sander lucioperca*). Levels of 9.5% of soybean lecithin in diet led to a 50% increase of larval final weight compared to a 1.4% inclusion level (Hamza *et al*. 2008). In juvenile of rainbow trout (*Oncorhynchus mykiss*), growth increased after a 14% soy-refined lecithin supplementation in diet (Rinchard *et al*., 2007). In rainbow trout, when menhaden oil was replaced by 10 and 15% soybean lecithin, no differences in body weight were detected at the end of the trial (Liu *et al*., 2004), suggesting that fish oil could be substituted by soybean oil. The beneficial effect of lecithin inclusion may depend on the developmental stage of fish as well as the composition of the diet under investigation. In the present feeding trial, sharpsnout sea bream were fed a complete fish meal diet. Growth and feed utilization did not improve after 1.5% lecithin supplementation.

Nucleosides have also been tested in diverse studies where their growth promoting effects have been seen in hybrid tilapia (Ramadan and Atef 1991) and rainbow trout (Adamek *et al*. 1996). It has also been shown to enhance immune response in hybrid tilapia, fed on a diet containing low fish meal (Shiau *et al*., 2015). **On the other hand, no significant difference was found in growth performance of hybrid striped bass (*Morone chrysops × Morone saxatilis*) fed on a diet containing 0.5% of a commercial oligonucleotide (Li *et al*., 2004). Nucleosides exert their growth promoting effect through enhancement of feed intake (Kubitza *et al*. 1997; Ikeda *et al*. 1991) and it appears that they did not further improve the already highly palatable fish meal diet in the present investigation.

Several studies on Nile tilapia (Gaber 2005), red sea bream (*Pagrus major*) (Kader *et al*. 2010) and black sea sass (*Centropristis striata*) (Alam *et al*., 2012) have proved the beneficial effect of krill meal supplementation on fish diets since it acts as a feeding stimulant. Juvenile Nile tilapia (*Oreochromis niloticus*) fed with krill in increasing levels up to 6%, showed a significantly faster growth compared to fish meal based diets (Gaber 2005). Yellowtail (*Seriola quinqueradiata*) fed with diets containing 2% krill extract displayed faster growth performance than the control diet without feed stimulant inclusion (Kofuji *et al*. 2006). During the first period of feeding substitution of 20-60% of fish meal protein by krill protein, growth increased in Atlantic salmon (*Salmo salar*) compared to control fish (Olsen *et al*. 2006). After dietary substitution of fish meal by krill meal, Atlantic cod (*Gadus morhua*) and Atlantic halibut (*Hippoglossus hippoglossus*) also showed significantly higher growth rates (Tibbetts *et al*. 2011). In the present investigation inclusion level of 10% krill meal did not increase feed consumption and growth of sharpsnout sea bream. In fact, the krill and the nucleosides+krill treatments produced the lowest SGR values and the FCR of the nucleosides+krill treatment was higher compared to the nucleosides treatment. These observations might be related to the substantial amounts of chitin in krill meal. There is evidence that inclusion of chitin (β-1,4-linked N-acetylglucosamine residues) – the predominant polysaccharide in the organisms that form krill – in diets is negligible or restricts growth rates. Chitin lowered growth and feed utilization at 10% inclusion level in hybrid tilapia *Oreochromis niloticus × O. Aureus*, (Shiau & Yu 1999), while in freshwater fish cyprinids golden mahseer (*Tor putitora*) and snow trout (*Schizothorax richardsonii*) the inclusion of 2% chitin on the diet had no effect on growth rate (Mohan *et al*. 2009).

The differences in final body weight between the nucleosides treatment and the nucleosides+krill treatment as well as lecithin+krill and nucleoedies+krill treatments did not correspond to differences in SGR and their biological significance is uncertain. Although the dietary treatments of krill and nucleosides caused differences in lipid concentration in the whole body proximate composition of sharpsnout sea bream. The
biological significance of this observation is not clear (Table 3). The fact that body weight and whole body lipids of fish fed on nucleosides was higher compared to krill fed fish leads us to conclude that the difference in lipid content is related to the difference in body weight.

In conclusion, this feeding trial showed that dietary supplementation of krill meal, lecithin, and nucleosides, in a fish meal-based diet does not improve growth, feed consumption, and feed conversion ratio, in sharpsnout sea bream. Although the beneficial effects of these additives have been proven in fish meal or/and fish oil substitution studies, it appears that this may be masked by high palatability and high nutrient value of fish meal.

References

