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Abstract 

The effects of air exposure on the antioxidant capacity of marine 

gastropod, Babylonia areolata, were evaluated. Superoxide 

dismutase (SOD) activity, malondialdehyde (MDA) content, and 

total antioxidant capacity (T-AOC) levels in the muscle and 

hepatopancreas in B. areolata were measured after air exposure and 

re-submersion. Results showed that SOD activity minimally 

increased in the hepatopancreas and muscle, after air exposure for 4 

h. SOD activity in the hepatopancreas was lower than the normal 

level after 20 h of air exposure and air exposure followed by 4 h of 

re-submersion. T-AOC levels in the hepatopancreas and muscle of B. 

areolata decreased significantly (P<0.05) following the period of air 

exposure. MDA content in the hepatopancreas of B. areolata 

subjected to air exposure for 24 and 28 h was significantly higher 

than the normal level. SOD activity in the hepatopancreas and T-

AOC level in the hepatopancreas and muscle of B. areolata 

recovered to the normal level after 12 h of air exposure followed by 

8 h of re-submersion. Air exposure can cause oxidative damage to 

B. areolata. The antioxidative system can be restored after air 

exposure for less than 12 h followed by re-submersion for 8 h. 
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Introduction  

Normal oxygen consumption by aerobic organisms produces potentially reactive 

oxygen species (ROS), including superoxide (O2
-) and hydrogen peroxide (H2O2) 

(Fridovich et al., 2004). ROS play a crucial role in various physiological processes. 

In the intertidal zone culture model, Babylonia areolata lives in the intertidal 

zone, which is a rigorous environment with extreme oxygen variations. To survive 

in this environment, B. areolata must endure periodic changes in oxygen, water 

availability, salinity, and temperature. The most serious situation is air exposure. 

Furthermore, juvenile B. areolata are often cultured in concrete ponds and 

transported to the intertidal zone. B. areolata suffer various forms of stress due 

to current handling practices, air exposure, re-immersion, and size selection. Air 

exposure is harmful to shellfish because it affects antioxidant defenses, immune 

responses, acid base status, respiration, energy-producing mechanisms, and 

survival (Chen et al., 2007; Dwyer and Burnett, 1996; Ellen et al., 2010). 

Excessive ROS production can increase oxidative stress (Kim et al., 2009). 

Environmental stresses, including air exposure, temperature, pH, algal toxin, and 

metals, induce a generation of ROS in shellfish (Almeida et al., 2004; Almeida 

and Bainy 2006; Qiu et al., 2013; Hu et al., 2015). Marine coastal ecosystems 

contain varied oxygen concentrations. Intertidal organisms must cope daily with 

large oxygen variations. These organisms are exposed to air twice a day during 

low tide and thus experience periodic hypoxia or anoxia. With incoming tides, 

tissues undergo rapid re-oxygenation, which potentially leads to hyperoxia 

(Sussarellu et al., 2012). ROS production increased significantly in scallops 

(Chlamys farreri) exposed to air at 17°C and 25°C (Chen et al., 2007).  

The spotted babylon B. areolata, is widely distributed from Sri Lanka and the 

Nicobar Islands through the Gulf of Siam, along the Vietnamese and Chinese 

coast to Taiwan (Regteren and Gittenberger, 1981). B. areolata has been a 

commercially important aquaculture species in China and Thailand but in nature, 

its numbers are decreasing (Guilan et al., 2013; Chaitanawisuti et al., 2002). The 

annual output of B. areolata is more than 1,000,000 kg, which corresponds to 

more than $15 million in China (Guilan et al., 2013). There are several models for 

culturing this species, including flow-through and static seawater systems in 

concrete/canvas ponds, earthen pond culture model, and the intertidal zone 

culture model (Kritsanapuntu al., 2009).  

To the best of our knowledge, there are few papers on the effects of air 

exposure and re-submersion on oxidative stress of shellfish species namely on 

the bivalve Perna perna (Almeida et al., 2005), C. farreri (Chen et al., 2007), 

Crassostrea virginica (Willson and Burnett, 2000), and freshwater gastropods 

Nacella concinna (Ellen et al., 2010), and Cipangopaludina chinensis malleata 

(Havel, 2011).  

 B. areolata is a marine gastropod that lives in intertidal zones where there are 

extreme oxygen variations. Since we found no information on the response of 

antioxidant enzyme activities to air exposure followed by re-submersion, we 

studied the effects of air exposure and re-submersion on the behavior and 

oxidant levels of B. areolata. Superoxide dismutase (SOD) activity, total anti-

oxidative capacity (T-AOC) level, and malondialdehyde (MDA) content in the 
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muscle and hepatopancreas were determined after exposure to air and re-

submersion. This study aims to provide a base for selecting marine zones for 

culture, and for designing a suitable strategy to decrease oxidative stress and 

mortality of B. areolata during transfer and other aquaculture activities. 

 

Materials and Methods 

Experiments were conducted in Zhanjiang Tengfei Industry Co., Ltd. (Zhanjiang, 

Guangdong, P. R. China). A batch of apparently healthy B. areolata (mean body 

weight 13.5 ± 0.5 g) was transferred to the laboratory from the culture pond. 

Only healthy and undamaged individuals were selected and maintained in an air-

conditioned room at 28°C. They were fasted for at least 12 h prior to the 

experiment.  

The air exposure experiment was performed by placing them in individual 

opaque foam tanks (120 L capacity) without water but covered with wet gauze to 

maintain air humidity. Individuals were subjected to air exposure stress for 0, 4, 

8, 12, 16, 20, 24, and 28 h. After air exposure at 28°C, individuals at different 

points in time   were re-submersed in aerated seawater (28°C) for 4 h. In 

another experiment, individuals exposed to air for 12 h were re-submersed in 

aerated seawater (28°C) for 4, 8, 12, 16, 20, and 24 h. Various forms of behavior 

were observed after air exposure and re-submersion.  

Samples of hepatopancreas (digestive gland) and foot muscle were collected 

after air exposure and/or re-submersion for analysis of antioxidant parameters. 

For each condition and sampling time (air exposure and re-submersion), 3 

individuals were sampled and analyzed respectively. All B. areolata individuals 

were placed on ice prior to anesthetization and dissection. The excised 

hepatopancreas and muscle tissues were homogenized in Tris-HCl buffer (pH 7.4) 

at 4 °C. The homogenates were centrifuged at 4000 g for 10 min at 4°C, and the 

clear supernatant was directly used for antioxidant parameter analysis (Liu et al., 

2015). SOD activity, T-AOC, and MDA content were evaluated using the 

corresponding commercial kits (Nanjing Jiancheng Bioengineering Institute, 

China) according to manufacturers’ instructions. 

Results were analyzed with one-way analysis of variance and Duncan’s 

multiple comparisons of the means were used to determine statistical differences. 

Statistical analyses were performed using SPSS 11.5 for Windows (SPSS Inc., 

Chicago, IL, USA). 

Results 

The state of each gastropod's foot was observed. After exposure to air, 

individuals opened their operculum and extended their feet. The foot was spread 

out in the air and retracted quickly at a slight touch. All re-submersed individuals 

were able to crawl. After 16 h of air exposure, some (40%) did not retract their 

foot into the shell completely when touched slightly but re-submersed individuals 

were able to crawl after 4 h of re-submersion. After 24 h of air exposure, 

individuals retracted their foot slowly when touched but could not retract fully into 
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their shell.  40% could crawl after 4 h of re-submersion. After 28 h of air 

exposure, 20% of the individuals died. Five individuals were re-submersed in the 

water for 4 h but only one could crawl a short distance. The remaining four 

individuals could not crawl.  

SOD activity in the hepatopancreas decreased significantly after 8 h of air 

exposure (P < 0.05) and showed a fluctuating trend (Fig.1.A). MDA content in the 

hepatopancreas was affected significantly (P < 0.05) by air exposure. MDA 

content reached the maximum value after 24 h of air exposure (Fig.1.B). T-AOC 

level in the hepatopancreas was also affected significantly (P < 0.05) by air 

exposure. T-AOC level reached the maximum value after 16 h of air exposure, 

and then decreased gradually after 20–28 h of air exposure (Fig.1C).  

 

A B 

  
C  

 

Fig.1. Effect of air exposure on SOD 

activity (A), MDA content (B), and T-AOC 
(C) in the hepatopancreas. Different 
lower-case letters indicate significant 
differences between air exposure times.    

 

There was a significant difference (P < 0.05) in SOD activity in the muscle 

between groups. SOD activity reached a maximum value after 16 and 20 h of air 

exposure, and then decreased to a minimum value after 16 h of air exposure 

(Fig.2.A). Unexpectedly, MDA content in the muscle showed a decreasing trend, 

but 28 h was the only time point at which the MDA content was significantly lower 

(P < 0.05) than at other time points (Fig.2.B). T-AOC level in the muscle was 

affected significantly by air exposure (P < 0.05). T-AOC level decreased gradually 

with prolonged air exposure. 
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Fig.2. Effect of air exposure on SOD 

activity (A), MDA content (B), and T-AOC 
(C) in the muscle. Different lower-case 

letters indicate significant differences 
between air exposure   times. 

At different time points of air exposure at 28°C, B. areolata was re-submersed 

in aerated seawater for 4 h. SOD activity in the hepatopancreas after 12 and 16 h 

of air exposure followed by 4 h of re-submersion was significantly higher (P < 

0.05) than at the other time points. SOD activity decreased after 16 h of air 

exposure followed by 4 h of re-submersion (Fig.3.A). MDA content in the 

hepatopancreas indicated a fluctuant change trend and reached a maximum value 

after 16 h of air exposure followed by 4 h of re-submersion. MDA content 

increased after 8, 12, and 16 h of air exposure followed by 4 h of re-submersion 

(Fig.3.B) compared with air exposure data (Fig.1.B). T-AOC levels increased 

significantly (P < 0.05) after 8 h of air exposure followed by 4 h of re-

submersion, then decreased gradually (Fig.3.C). 
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Fig.3. Effect of air exposure followed by re-
submersion on SOD activity (A), MDA 
content (B), and T-AOC (C) in the 
hepatopancreas. Different lower-case letters 

indicate significant differences between air 
exposure times. 

After air exposure which was followed by 4 h of re-submersion, the changing 

trend of SOD activity in the muscle was similar to that in the hepatopancreas. 

SOD activity increased significantly at several time points and then decreased 

(Fig.4.A). MDA content minimally changed and reached the maximum value after 

12 h of air exposure followed by 4 h of re-submersion (Fig.4.B). The different 

changing trend of T-AOC levels was compared with air exposure data (Fig.2.C). T-

AOC levels increased significantly after 12 and 16 h of air exposure followed by 4 

h of re-submersion (P < 0.05), then decreased. The lowest level of T-AOC was 

detected after 28 h of air exposure followed by 4 h of re-submersion (Fig.4.C).  

A B 

  

C  

 

Fig.4. Effect of air exposure followed by 
re-submersion on SOD activity (A), MDA 
content (B), and T-AOC (C) in the muscle. 
Different lower-case letters indicate 
significant differences between air 
exposure times. 
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After 12 h of air exposure, B. areolata was re-submersed in aerated seawater 

(28°C) for 4, 8, 12, 16, 20, and 24 h. Samples diagnosed showed that SOD 

activity in the hepatopancreas increased after 4 h of re-submersion, and reached 

normal levels after 20 h of re-submersion (Fig.5.A). No significant difference (P > 

0.05) was observed in MDA content at different times after re-submersion 

(Fig.5.B). During re-submersion, T-AOC levels did not change significantly in the 

hepatopancreas (P > 0.05). Standard deviations of T-AOC levels were high at 

each time point (Fig.5.C). 

A B 

  

C  

 

Fig.5. Effect of re-submersion time after air 
exposure for 12 h on SOD activity (A), 

MDA content (B), and T-AOC (C) in the 
hepatopancreas.  
Different lower-case letters indicate 
significant differences between air 
exposure times. 

B. areolata was re-submersed in water after air exposure for 12h. SOD 

activity in the muscle decreased significantly after re-submersion with a minimum 

value after 12h of re-submersion (Fig.6.A). MDA content reached the maximum 

value after 12 h of re-submersion (Fig.6.B). T-AOC levels increased after 8 h of 

re-submersion, which was approximately equal to the normal level (Fig.6.C). 
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C  

 

Fig.6. Effect of re-submersion time after air 
exposure for 12 h on SOD activity (A), MDA 
content (B), and T-AOC (C) in the muscle. 
Different lower-case letters indicate 

significant differences between air exposure 

times.   

Discussion 

Many mollusks exhibit high tolerance to air exposure. These organisms 

experience air exposure and variations in oxygen levels during the tidal cycle, and 

thus develop several mechanisms to survive and recover under air exposure at 

low tides. A strategy commonly used by intertidal animals during tidal exposure is 

reduction in oxygen consumption. P. canaliculus decreased their oxygen uptake 

by 87% under these conditions (Marsden and Weatherhead, 1998). Only 0.1% of 

normal oxygen uptake was retained by the oyster C. virginica exposed to air 

(Willson and Burnett, 2000). Shell gapping also enhances the survival of mollusks 

exposed to air. The gills may approach the aerial environment, and water around 

the gill surface contains high oxygen levels. Relative humidity also influenced the 

tolerance of Corbicula fluminea to air exposure at 15°C (Byrne and Dietz, 1988). 

The tolerance of C. chinensis juveniles to air exposure was also influenced by 

humidity (Havel, 2011). These findings indicate that high humidity can maintain 

the moisture of gills and increase oxygen. In the present study, the operculum of 

B. areolata opened during air exposure, and the feet were spread out in air to 

allow the gills to obtain oxygen. Under relatively high humidity conditions (mean 

RH of 69%), mollusks showed high tolerance to air exposure (Byrne and Dietz, 

1988). Strategies used by intertidal mollusks depend on their position in the 

intertidal zone. Low- and mid-littoral bivalve species generally close their valves 

and primarily rely on anaerobic pathways coupled with large reduction in 

metabolic rate (Mcmahon, 1988). Conversely, high littoral bivalves, such as 

Modiolus demissus, open their shells and obtain oxygen from the air (Lent, 1969).  

In this study, SOD activity in the hepatopancreas of B. areolata exposed to air 

for 4 h was not significantly different (P > 0.05) from the normal level (0 h of air 

exposure) but SOD activity both in the hepatopancreas and in the muscle slightly 

increased after air exposure for 4 h. P. perna exposed to the air for 4 h exhibited 
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high SOD activity in the digestive gland (Almeida and Bainy, 2006). This pattern 

of increase of some antioxidant enzyme activities was also found in other 

animals, such as Paralomis granulosa (Romero et al., 2011), C. farreri (Chen et 

al., 2007), and Litopenaeus vannamei (Liu et al., 2015). This response could be a 

preparative mechanism against oxidative stress during re-submersion, which 

could explain the low SOD activity after 4 and 8 h of air exposure followed by 4 h 

of re-submersion. However, SOD activity in the hepatopancreas was low after 8 

and 12 h of air exposure. This trend indicated that animals switch from normal 

metabolism to low-oxygen consumption metabolism. This time-course response 

of SOD activity was also observed in P. Perna (Almeida et al., 2005).  

During re-submersion, SOD activity in B. areolata showed a time-course 

response, which was affected significantly by duration of air exposure. SOD 

activity in the hepatopancreas was significantly higher (P < 0.05) after 8, 12, and 

16 h of air exposure followed by 4 h of re-submersion than at the other time 

points. SOD activity both after 20 h of air exposure and air exposure followed by 

4 h of re-submersion was lower than the normal level. This finding indicated that 

16 h was the maximum time required by B. areolata to sustain normal 

antioxidant function after air exposure followed by re-submersion.  

T-AOC comprises enzymatic and non-enzymatic antioxidants, the non-

enzymatic antioxidants include glutathione (GSH), ascorbic acid, carotenoids, and 

their derivatives, etc. (Mahfouz et al., 2009). T-AOC levels in the hepatopancreas 

and muscle of B. areolata decreased significantly (P < 0.05) after air exposure. 

During air exposure, non-enzymatic antioxidants were mainly absorbed in these 

tissues. These results suggested that non-enzymatic antioxidants fulfill an 

important role against ROS or oxidative damage during air exposure. The 

importance of non-enzymatic antioxidants in protecting Scrobicularia plana from 

mercury pro-oxidant action was highlighted by investigating changes in ascorbic 

acid and GSH (Ahmad et al., 2012). During air exposure and re-submersion, the 

changing pattern of T-AOC levels in the hepatopancreas and muscle of B. areolata 

is similar to that of L. vannamei (Liu et al., 2015).  

Lipid peroxidation leads to the formation of secondary products, such as MDA. 

This process has been evaluated as an indicator of environmental stresses in 

different tissues of the mussel P. Perna (Almeida et al., 2003; Almeida et al., 

2004; Filho et al., 2001). When exposed to air for 24 h, the levels of lipid 

peroxidation in gills and digestive glands of P. perna increased significantly 

(Almeida et al., 2005). After air exposure, lipid oxidation increased in the tissues 

of Antarctic limpet N. cocinna and P. granulose (Ellen et al., 2010; Romero et al., 

2007). In the present study, B. areolata exposed to air for 24 and 28 h showed 

significantly higher MDA content in the hepatopancreas compared with the normal 

level, however, MDA content in the muscle, did not increase significantly after air 

exposure. The results appear to be associated with the different tissues; 

hepatopancreas was more prone to oxidative damage than muscle. The 

underlying reason remains unclear but maybe be due to structural and functional 
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differences between the two tissue types. After 12 h of air exposure followed by 

re-submersion for 8 h, SOD activity in the hepatopancreas and T-AOC levels in 

the hepatopancreas and muscle of B. areolata recovered to normal levels. MDA 

content in the hepatopancreas and muscle of B. areolata after air exposure for 12 

h and re-submission for 12 h approached normal levels. 

In summary, air exposure can cause oxidative damage to B. areolata. 

Oxidative damage can be restored when individuals are returned to their normal 

habitat, but the oxidative damage is irreversible and eventually causes death in 

animals after long periods of air exposure. The results of this study indicated that 

the critical time-period of air exposure is probably at 12 h for B. areolata. This 

information is useful to minimize oxidative stress in commercial aquaculture, and 

the capture process. 
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