The Open Access Israeli Journal of Aquaculture – Bamidgeh

As from January 2010 The Israeli Journal of Aquaculture - Bamidgeh (IJA) will be published exclusively as an on-line Open Access (OA) quarterly accessible by all AquacultureHub (http://www.aquaculturehub.org) members and registered individuals and institutions. Please visit our website (http://siamb.org.il) for free registration form, further information and instructions.

This transformation from a subscription printed version to an on-line OA journal, aims at supporting the concept that scientific peer-reviewed publications should be made available to all, including those with limited resources. The OA IJA does not enforce author or subscription fees and will endeavor to obtain alternative sources of income to support this policy for as long as possible.

Editor-in-Chief
Dan Mires

Editorial Board
Sheenan Harpaz
Agricultural Research Organization
Beit Dagan, Israel

Zvi Yaron
Dept. of Zoology
Tel Aviv University
Tel Aviv, Israel

Angelo Colorni
National Center for Mariculture, IOLR
Eilat, Israel

Rina Chakrabarti
Aqua Research Lab
Dept. of Zoology
University of Delhi

Ingrid Lupatsch
Swansea University
Singleton Park, Swansea, UK

Jaap van Rijn
The Hebrew University
Faculty of Agriculture
Israel

Spencer Malecha
Dept. of Human Nutrition, Food
and Animal Sciences
University of Hawaii

Daniel Golani
The Hebrew University of Jerusalem
Jerusalem, Israel

Emilio Tibaldi
Udine University
Udine, Italy

Copy Editor
Ellen Rosenberg

Published under auspices of
The Society of Israeli Aquaculture and
Marine Biotechnology (SIAMB),
University of Hawaii at Manoa Library
and
University of Hawaii Aquaculture
Program in association with
AquacultureHub
http://www.aquaculturehub.org

ISSN 0792 - 156X

© Israeli Journal of Aquaculture - BAMIGDEH.

PUBLISHER:
Israeli Journal of Aquaculture - BAMIGDEH -
Kibbutz Ein Hamifratz, Mobile Post 25210, ISRAEL
Phone: + 972 52 3965809
http://siamb.org.il
Effect of Photoperiod on Growth of Trout

(*Oncorhynchus mykiss*) in Cold Ambient Sea Water

Ali Turker*

Department of Aquaculture, Faculty of Fisheries, University of Mugla, Mugla 48000, Turkey

(Received 26.8.08, Accepted 5.11.08)

Key words: photoperiod, trout, *Oncorhynchus mykiss*, growth, sea water

Abstract

The effects of four photoperiod regimes on growth performance of the rainbow trout (*Oncorhynchus mykiss* W.) in cold ambient seawater conditions were compared in indoor seawater tanks (salinity 18 g/l; 6-8°C) in January-February. The photoperiods were the natural photoperiod (10 h light: 14 h dark), 20 h light:4 h dark, 16 h light:8 h dark, and 0 h light:24 h dark. Fish were fed a diet consisting of 47% protein, 20% fat, 11% ash, and 8.5% moisture. At the end of eight weeks, the relative growth rate and feed intake were significantly higher in fish exposed to 20L/4D than in other photoregimes. Total protein intake (g), protein retention (%), and N content in fish (%) significantly improved with the increase of light hours, indicating that optimal growth in the study conditions is obtained in extended light regimes (20L/4D or 16L/8D).

Introduction

The strongest ‘zeitgeber’ (time giver) for plants, land based animals, and fish is light. Other non-photonic zeitgebers include water conditions, pharmacological manipulations, and feeding patterns. Light is very important for fish and larvae, depending on the developmental stage and species.
Effect of photoperiod on growth of trout in cold sea water (Endal et al., 2000). Photoperiod manipulation has successfully improved the growth of some fish. Light-dark transitions are important in synchronizing locomotor activity rhythms in Atlantic salmon, *Salmo salar* (Richardson and McCleave, 1974). Diel rhythms of locomotor activity in the rainbow trout, *Oncorhynchus mykiss*, are influenced by a circadian time entrained to light-dark cycles (Iigo and Tabata, 1997). Light density is the main abiotic factor that influences growth, feed intake, immune system, and spawning in rainbow trout (Boujard et al., 1995; Leonardi and Klempau, 2003; Taylor et al., 2006).

The objectives of this study were to examine whether photoperiod manipulation can enhance the growth performance of rainbow trout cultured in sea water and whether culture can be sustained during the winter (5-10°C) or must be suspended. The growth rate and feed intake in rainbow trout cultured in extended photoperiods (20 h light/4 h dark or 16 h light/8 h dark) in the cold winter conditions of the Black Sea were examined.

Materials and Methods

Fish stock. Rainbow trout (*Oncorhynchus mykiss*) were supplied by a private trout farm in Bafra, Samsun (Turkey). Upon arrival at the Research Unit of the Faculty of Fisheries in the mid-Black Sea, they were acclimated to experimental conditions for ten days in tanks (30 x 55 x 40 cm).

Experimental design. After acclimation, the fish (avg 24.59±1.2 g) were divided into twelve groups of 15 fish each and stocked into 60-l plastic tanks supplied with running sea water (pH 8.2, 6-8°C, oxygen 8-10 mg/l, salinity 17-18 g/l). Three tanks were exposed to each of the four treatments: natural photoperiod (10 h light:14 h dark), 20 h light:4 h dark, 16 light and 8 dark, and 0 light and 24 dark. Light was supplied by one 24 W fluorescent tube at the water surface, controlled by electronic analogue timers. Dissolved oxygen, temperature, and pH were monitored throughout the study.

The fish were fed commercial extruded pellets (Ecobio Industry Co., Turkey, 0.4 cm diameter) to satiation twice daily (at 9:00 and 16:00). The diet contained 47% protein, 20% fat, 11% ash, and 8.5% moisture. The fish were fed manually with small amounts of feed. The appetite of the fish was observed to prevent feed loss. Uneaten feed was collected and weighed to estimate feed conversion ratio, feed efficiency, and other feed and growth parameters.

Five fish from each tank were weighed biweekly as well as at the end of the trial. All fish were returned to the tanks following weighing. Growth was measured as the percent weight gain. Feed conversion efficiency, protein efficiency ratio, and other feeding or growth indicators were calculated as described by Liu et al. (1998). The experiment lasted 56 days in January-February.

Chemical analysis. Eight fish at the beginning of the experiment plus three fish from each experimental tank at the end were randomly sampled and stored at -25°C for whole body composition analysis. For analysis, the diet and fish were dried in an oven at 105°C until a constant weight was obtained. Ash was weighed after incineration in a muffle furnace at 450°C for 16 h. Crude protein (N x 6.25) was determined by the Kjeldahl method using the Kjeltec system after acid digestion. Lipid content was determined by 40-60°C petroleum ether extraction in a Soxhlet apparatus.

Statistical analysis. Results were analyzed by one-way analysis of variance (ANOVA). When ANOVA identified differences among groups, multiple comparisons among means were made with Duncan’s new multiple range test. Statistical significance was determined by setting the aggregate Type 1 error at 5% (*p*<0.05) for each set of comparisons.
Effect of photoperiod on growth of trout in cold sea water

Results

Survival was 100% for all treatments. Feed intake increased as the duration of light increased and there were significant differences among groups (Table 1). Growth, protein intake, protein retention, and energy intake were highest for trout exposed to 20 h light. Final body weight was also significantly higher in groups exposed to 20 h light than in other groups (Fig. 1). Fish exposed to 20 h light had significantly lower moisture content (Table 2).

Discussion

Extended light hours significantly improved the growth of the trout. Improved appetite, more feed intake, higher food conversion efficiency, and induction of growth hormone release are generally held responsible for faster growth in Atlantic salmon (Saunders and Harmon, 1990; Oppedal et al., 1997) and rainbow trout exposed to extended photoperiods (Boujard and Leatherland, 1992; Ergun et al. 2003, Taylor et al. 2005). Feeding activity is fundamental, as salmon eat very little

Table 1. Growth and feed performance of rainbow trout exposed to different photoperiods for eight weeks (averages of three replicates of 15 fish per tank).

<table>
<thead>
<tr>
<th>Photoperiod</th>
<th>Natural (10 h light:4 h dark)</th>
<th>20 light:4 dark</th>
<th>16 light:8 dark</th>
<th>0 light:24 dark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avg initial wt/fish (g)</td>
<td>24.82±0.22</td>
<td>24.74±0.32</td>
<td>24.07±0.39</td>
<td>24.74±0.37</td>
</tr>
<tr>
<td>Avg final wt/fish (g)</td>
<td>58.26±0.52<sup>a</sup></td>
<td>83.52±0.73<sup>c</sup></td>
<td>69.03±0.60<sup>b</sup></td>
<td>41.75±0.62<sup>d</sup></td>
</tr>
<tr>
<td>Daily growth/fish (%)<sup>1</sup></td>
<td>1.44±0.01<sup>a</sup></td>
<td>1.94±0.01<sup>c</sup></td>
<td>1.72±0.03<sup>b</sup></td>
<td>0.91±0.02<sup>d</sup></td>
</tr>
<tr>
<td>Relative growth rate (%)<sup>2</sup></td>
<td>134.69±4.11<sup>a</sup></td>
<td>237.59±6.48<sup>c</sup></td>
<td>186.82±5.51<sup>b</sup></td>
<td>68.74±4.84<sup>d</sup></td>
</tr>
<tr>
<td>Feed/tank (g)</td>
<td>550<sup>a</sup></td>
<td>972<sup>c</sup></td>
<td>765<sup>b</sup></td>
<td>270<sup>d</sup></td>
</tr>
<tr>
<td>Total protein intake (g)<sup>3</sup></td>
<td>258.5±2.41<sup>a</sup></td>
<td>456.8±4.97<sup>c</sup></td>
<td>359.5±4.23<sup>b</sup></td>
<td>126.9±1.51<sup>d</sup></td>
</tr>
<tr>
<td>Protein retention/tank (%)<sup>4</sup></td>
<td>33.54±0.3<sup>a</sup></td>
<td>37.93±0.23<sup>c</sup></td>
<td>36.28±0.26<sup>b</sup></td>
<td>31.50±0.36<sup>d</sup></td>
</tr>
<tr>
<td>Total N intake (mg/g)<sup>5</sup></td>
<td>82.46±0.75<sup>b</sup></td>
<td>82.90±0.99<sup>c</sup></td>
<td>85.30±0.66<sup>b</sup></td>
<td>79.58±0.91<sup>a</sup></td>
</tr>
<tr>
<td>N content (%)<sup>6</sup></td>
<td>2.62±0.03<sup>b</sup></td>
<td>2.94±0.42<sup>c</sup></td>
<td>2.86±0.04<sup>c</sup></td>
<td>2.46±0.48<sup>a</sup></td>
</tr>
<tr>
<td>Daily dry energy intake (Kcal/fish)</td>
<td>12.45±0.12<sup>a</sup></td>
<td>21.99±0.24<sup>c</sup></td>
<td>17.31±0.21<sup>b</sup></td>
<td>6.11±0.07<sup>d</sup></td>
</tr>
</tbody>
</table>

Values in a row with different superscripts significantly differ (p<0.05).

1 Daily growth = 100(wt² - wt¹)/(wt¹ + wt¹)/2
2 Relative growth rate = 100(final wt - initial wt)/(initial wt)
3 Total protein intake = total feed intake x % protein in feed
4 Protein retention = 100((final wt x final protein in fish) - (initial wt x initial protein in fish))/total protein intake
5 N intake = total protein intake/no. of fish/6.25/total wt gain x 1000
6 N content in fish = final protein in fish/6.25
or not at all during the night (Thorpe et al., 1989). On the other hand, growth in Atlantic salmon post-smolts, cultured in net pens, was enhanced when light hours were reduced (Huse et al., 1990) and the winter growth rate of seawater-reared rainbow trout was not affected by extended or constant light treatment (Solbakken et al., 1999). These differences in findings may be due to genetic differences or environmental conditions (Sumpter, 1992).

Fish growth, total feed intake, and total protein intake were closely related with each other and better in the prolonged light treatments. Growth of rainbow trout was better in covered tanks exposed to 1600 lx rather than 100 lx and, although the fish exposed to the higher intensity appeared more active with greater energy requirements, there were no differences in feed conversion (Cho, 1992). Long growth-stimulating photoperiods improve feed efficiency (Gines

Table 2. Proximate composition (% wet weight) of rainbow trout grown in different photoperiods.

<table>
<thead>
<tr>
<th>Photoperiod</th>
<th>Initial</th>
<th>Natural (10 h light: 14 h dark)</th>
<th>20 light: 4 dark</th>
<th>16 light: 8 dark</th>
<th>0 light: 24 dark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture</td>
<td>76.9±0.4</td>
<td>74.1±0.4<sup>a</sup></td>
<td>71.4±0.7<sup>c</sup></td>
<td>72.3±0.4<sup>b</sup></td>
<td>75.2±0.3<sup>d</sup></td>
</tr>
<tr>
<td>Crude protein</td>
<td>15.2±0.3</td>
<td>16.4±0.1<sup>a</sup></td>
<td>18.4±0.4<sup>b</sup></td>
<td>17.9±0.1<sup>b</sup></td>
<td>15.4±0.1<sup>c</sup></td>
</tr>
<tr>
<td>Crude lipid</td>
<td>5.8±0.2</td>
<td>6.8±0.5<sup>a</sup></td>
<td>7.8±0.4<sup>c</sup></td>
<td>7.4±0.4<sup>b</sup></td>
<td>6.1±0.3<sup>d</sup></td>
</tr>
<tr>
<td>Ash</td>
<td>1.5±0.03</td>
<td>2.2±0.1<sup>ab</sup></td>
<td>1.8±0.1<sup>a</sup></td>
<td>2.0±0.2<sup>ab</sup></td>
<td>2.5±0.3<sup>b</sup></td>
</tr>
</tbody>
</table>

Values in a row with different superscripts significantly differ (p<0.05).
et al., 2004). The growth-promoting effect of the extended photoperiod can be attributed to the enhancement of parr-smolt transformation associated with growth, and increased levels of growth hormone. When the photoperiod rapidly increases, plasma growth hormone levels also increase (McCormick et al., 1995).

In conclusion, results indicate that an extended period of light (20L/4D) may improve the growth rate and feed utilization in juvenile rainbow trout grown in cold ambient seawater conditions.

References

