ACOUSTIC CORRELATES OF STATEMENT AND QUESTION INTONATION IN SOUTHERN VIETNAMESE

Dích Mực Đào
University of Social Sciences and Humanities,
National Vietnamese University of Hồ Chí Minh City, Vietnam
dichvns@hcmussh.edu.vn

Anh-Thư T. Nguyễn
Mountain Creek, QLD 4557, Australia
thunguyen1972@gmail.com

Abstract
This paper reports a study that investigated the acoustic correlates of the intonation patterns of statements versus various kinds of questions in Southern Vietnamese. Sentences identical in segmental make-up and lexical tone were elicited in nine different contexts: (1) statements, (2) Yes-No questions without particles, (3) Yes-No questions with the particle không, (4) questions with the particle ư (5) alternative questions with the particle hay ‘or’, (6 and 7) Wh-questions with the particles ai (who) and chứng nào ‘when’ at the beginning, and (8 and 9) Wh-questions with particles cho ai ‘for whom’ and hồi nào ‘when’ at the end. Twenty speakers (9 males and 11 females) from Hồ Chí Minh City participated in the study. The results show that there are a number of acoustic strategies for realizing the difference between declaratives and the interrogatives in Southern Vietnamese: global F0, speech tempo, intensity and local sentence-final F0. The results of this investigation contribute to the study of Vietnamese prosody, cross-language and cross-dialectal prosodic comparison.

Keywords: declarative, interrogative, intonation, acoustic phonetics, Southern Vietnamese

ISO 639-3 codes: vie

1. Introduction
The difference between declarative and interrogative intonation has been studied a great deal since 1950 by many linguists, but agreement on this question has not yet been reached (Zeng, Martin and Boulakia 2004). In English as well as many other non-tonal languages, interrogative intonation, particularly yes-no questions, has a rising pitch contour, whereas declarative intonation has a falling pitch contour. This phenomenon has been widely studied and was generalized as the Strong Universalist Hypothesis (Ladd 1981), according to which rising pitch indicates a question and falling pitch indicates a statement. These tendencies can also be explained as soft universals: the Frequency and the Effort Codes (Ohala 1983; Gussenhoven 2004). In a tone language such as Chinese or Vietnamese, however, the difference between declarative and interrogative intonation is much more complicated because of tone and intonation interaction. For example, a sentence with an interrogative intonation ending in a final rising tone has a rising end, which is similar to English, whereas an interrogative sentence with a final falling tone often has a falling end (Yuan, Shih and Kochanski 2002). Studies in Chinese intonation show that the diverse surface patterns can be accounted for by two consistent features: (1) Interrogative intonation has a higher phrase curve than declarative intonation; (2) Sentence final syllables have more careful intonation and wider pitch swings in interrogative sentences (Yuan, Shih and Kochanski 2002; Zeng, Martin and Boulakia 2004).
In Vietnamese, previous studies have shown that there are a number of acoustic correlates for realizing sentence modalities, predominantly based on global F0 and intensity and local sentence-final F0 (Trần 1967; Đỗ et al. 1998; Nguyễn and Boulakia 1999; Vũ et al. 2006; Brunelle, Ha and Grice 2012). It has been found that declaratives tend to have a slight overall F0 declination (Đỗ et al. 1998; Nguyễn and Boulakia 1999), Interrogatives are found to have a high overall range (Hoàng 1985), or a high range and a rise starting much before the sentence final question marker (Đỗ et al. 1998; Nguyễn and Boulakia 1999). However, one study suggests that the range difference between statements and questions is insignificant and that the rise of the questions is largely located towards the end of the sentence-final question particle (Vũ et al. 2006). In a recent study, Brunelle, Ha and Grice (2012) look at the role of intonation in the realization of communicative functions in Northern Vietnamese. Their results show that there are a number of acoustic strategies for realizing communicative functions, predominantly based on global F0 and intensity and local sentence-final F0. Nevertheless, the acoustic properties associated with communicative functions are variable, or even absent in individual speakers.

In regard to duration, it is found by Nguyễn and Boulakia (1999) that interrogatives have a shorter duration than declaratives. Imperatives are also described as having a high overall F0 (Hoàng 1985), possibly with an additional final rise (Đỗ et al. 1998) and a longer duration (Trần 2007). However, they do not rise as high as interrogatives, and are claimed to have a higher intensity than declaratives (Nguyễn and Boulakia 1999). Studies on emphatic rendering of speech also find raised F0 and intensity, but no significant changes in voice quality (Michaud and Vũ 2004; Michaud 2005).

Generally, the results of studies in Vietnamese indicate that global pitch properties, overall trends in the F0 or F0 range, convey sentence modes. Local pitch effects, such as a final rise in questions, have received less attention and only recently been investigated by Brunelle, Ha and Grice (2012) for Northern Vietnamese. In a recent study, Brunelle (2016) used an eight-hour corpus of Southern Vietnamese spontaneous speech as a basis for investigation of intonation. The results showed that just as in Northern Vietnamese, there is little evidence for strongly phonologized boundary tones in Southern Vietnamese. The two systematic intonational patterns uncovered in this study, a higher F0 in the final syllable of exclamatives and emphatics, and a lower F0 in backchannel utterances, could both be attributed to a weak effect of a universal effort code (Nespore and Vogel 1986; Selkirk 2011) rather than to phonological targets.

The modest aim of this paper is to provide a descriptive analysis of the acoustic correlates of the intonation patterns of statements versus various kinds of questions in Southern Vietnamese. This study is different from previous studies in several ways: (1) while previous studies employed Northern Vietnamese speakers, this study focuses on the Southern dialect (Saigon speakers); a very first study of intonation in Southern Vietnamese was by Trần (1967) which was based on auditory observation; (2) while previous studies concentrate on the comparison of the intonation of statement and Yes-No question, this study includes different types of questions such as Yes-No questions with and without the particle không, ‘or’ questions with the particle hay [or] and Wh-questions with the particles not only at the beginning (ai ‘who’ and cung nào ‘when’) but also at the end of the questions (cho ai ‘for whom’ and hỏi nào ‘when’).

Vietnamese is a tonal language. Standard Northern Vietnamese has six different tones comprising ngang (level tone), huyễn (falling tone), hoi (curve tone), ngã (broken or creaky tone), sác (rising tone), and nạng (dropping tone) (Đoàn 1999; Đinh and Nguyễn 1988; Vũ 1981). Every word is marked with a tone, and differences in tone lead to changes in the meaning of a word. In the Southern Vietnamese tone system there are just five tones: level, falling, broken-curve, rising, and dropping (Đinh and Nguyễn 1988; Brunelle 2009a; 2009b). Two additional tones are found in checked syllables (i.e. syllables closed by voiceless stops), but will not be dealt with here.

According to Vũ (1981) and Phảm (2003), the acoustic and perceptual correlates of Vietnamese tones include the direction of pitch (F0) movement, pitch height and voice quality, which play a more important role than other tonal dimensions, such as duration and intensity, in the identification of Vietnamese tones. According to Vũ (1981), Brunelle (2009) and Kirby (2010), the Southern Vietnamese are purely pitch-based, while the Northern Vietnamese are cued by a combination of pitch and voice quality. Southern Vietnamese speakers may mimic Northern Vietnamese voice quality distinctions in certain situations, but colloquial Southern Vietnamese speech does not make contrastive use of distinctive voice quality.

While the level (ngang), falling (huyễn), and rising (sác) tones in Southern Vietnamese are nearly identical to their Northern Vietnamese counterparts, the realization of the hoi (curve tone), ngã (broken tone), and nạng (dropping tone) is rather different. The contour tones hoi (curve tone) and ngã (broken
tone) have merged in Southern Vietnamese into a single tone with a falling-rising pitch contour and little to no trace of laryngealization (Brunelle 2009; Kirby 2010). The Southern Vietnamese nặng tone (dropping tone) has a similar type of pitch excursion, although its final rise is less extreme. In contrast to the Northern Vietnamese low nặng tone, which is short and marked by strong final laryngealization, the Southern Vietnamese nặng tone lacks any laryngealization, and, perhaps as a result, has a longer average duration compared to its Northern Vietnamese counterpart (Kirby 2010).

2. Methods

2.1. Linguistic materials

In order to pursue the aim of this study, we constructed a data set made up of sentences that are strictly controlled for their segments, tones and syntactic structures, and in which all five lexical tones in Southern Vietnamese were tested. Sentences identical in segmental make-up and lexical tone were elicited in nine different contexts: (1) statements, (2) Yes-No questions without particles, (3) Yes-No questions with the particle không, (4) questions with the particle ư (5) alternative questions with the particle hay (or), (6 and 7) Wh-questions with particles ai ‘who’ and currentIndex.length > index ? currentIndex[index] : void 0

aira ‘when’ at the beginning, and (8 and 9) Wh-questions with the particles cho ai ‘for whom’ and hội nào ‘when’ at the end. They were all composed of root SVO clauses made up of six, seven or eight words/syllables. Each context has five tones and each tone has two sentences: 9 contexts x five tones x 2 sentences = 90 sentences. A complete list of the sentences is presented in Appendix 1. It is noted that the mixing of diacritics in sentences 9 and 10 is fine because these tones are merged in this dialect.

2.2. Participants

The participants included 20 Southern speakers (9 males and 11 females) from Hồ Chí Minh city. Their age ranges from 23 to 45. They were students and teaching staff at University of Social Science and Humanities of Hồ Chí Minh City, Vietnam. Most of them were born in Hồ Chí Minh city, while six were born in neighbouring provinces in the Mekong Delta, but they grew up in Hồ Chí Minh City. The details of the speakers’ backgrounds (e.g. their and their parents’ place of birth, etc.) are provided in Appendix 2.

2.3. Procedures

The 90 sentences used for elicitation purposes were presented to the subjects in print. Before the recording, they had time to become familiar with the sentences. The subjects were asked to speak the sentences to the first researcher in a quiet room. They first spoke the ten declarative sentences to the researcher, one by one. Then they asked the researcher the remaining 80 questions. Each sentence was spoken only once by a speaker. We assume that after being familiar with the sentences, the subjects would speak them more naturally. Since the meanings of these sentences were straightforward, without any ambiguity on their own, there was no need for context sentences preceding them, as in the case of Brunelle, Ha and Grice (2012). The questions without particles that were exactly the same as the corresponding statements in terms of segmental and tone makeup were presented with a question mark at the end, while all other questions types have question words/particles, also having a question mark at the end. It is noted that questions without particles is possible in Vietnamese, but the occur less frequently than questions with particles, so they can be considered ‘marked’.

The sentences were recorded at 44.1kHz using the built-in microphone of a laptop and the Praat software (Boersma and Weenink 2010). A native listener (the second author) was then asked to rate the naturalness of the 1,800 recorded sentences, and those that were judged unnatural (28/1800 sentences or 1.5%) were excluded from the analysis.

It is noted that given the conditions in which data is presented, the difference between declaratives and interrogatives was obvious to the speakers. Thus, we would expect a maximally contrastive intonation. Furthermore, since the declaratives are all read before the interrogatives, any durational effects found in interrogatives may be affected by increased familiarity with the experiment conditions.
2.4. Analysis

Sentences produced by the speakers were acoustically processed and analyzed in Praat (Boersma and Weenink 2010). Each sentence was segmented into words and a script was used to extract the duration, the intensity and F0 at five equidistant points in each word. Results were visually inspected for F0 doubling and halving: suspicious values were simply excluded.

In order to present acoustic tonetic properties of tones in a tonal language and to avoid certain between-speaker differences in acoustic properties of voice signals due to speaker’s vocal tract anatomy and physiology, it is necessary to use a method of normalisation to retain only the linguistic content of speech signal and exclude individual content (Rose 2000). The formula used for F0 normalisation in this study was the Z-score transform, which has been shown to be more effective than other forms of F0 normalisation in a tonal language (see Rose 1987):

\[
F0_{\text{norm}} = \frac{(F0_i - F0)}{s}
\]

where \(F0_{\text{norm}}\) is the normalised F0 value expressed as a multiple of some standard deviations (s) above or below the mean F0 (\(F0\)), and \(F0_i\) is the F0 value to be normalised. The normalised F0 values of each tone for all subjects were then used to calculate mean normalised F0.

It has also been shown (Rose 1993) that it is important for linguistic tonetic comparison to retain information on relative tonal duration, so the duration values were normalised as a percentage of a speaker’s mean duration value calculated from all tones. For example, if a speaker’s mean duration was 41.07 csec, the normalised value for his level tone duration of 43.8 csec was \((43.8/41.07) \times 100 = 107\%\). Figures 2, 4 and 5 show the results of mean F0 and duration normalisation across male and female speakers (9 males and 11 females).

In order to account for the effect of speakers’ differences and the intrinsic segmental and tonal effects, a restricted maximum likelihood (REML) applied to mixed effect model methodology was performed on the duration (ms), F0 values (Hz) at 5 points on a word/syllable, and intensity (dB) at 5 points on a word/syllable. The fixed effects included contexts (9 contexts), tones (5 tones) and speakers (20 speakers). It is noted that speakers were used both as a fixed effect and a random effect. Thus, the random effects were speakers (20 speakers), sentences (1772 sentences=1,800-28 excluded sentences), and words (13,912 words). The use of REML overcomes the potentially serious deficiency of the ANOVA-based methods which assumed that data are sampled from a random population and normally distributed. REML also avoids bias arising from maximum likelihood estimators in which all fixed effects are known without errors and consequently tend to downwardly bias estimates of variance components. Moreover, REML can handle unbalanced data. The data analysis was carried out using the SPSS program. The results of the main effects and their interactions are reported in Appendix 3. Post-hoc tests by Fisher’s Least Significant Difference (LSD) were used for pairwise comparison between contexts/sentence types and reported in Appendix 4. It is noted that by not including random slopes, we get a model that is anti-conservative.

In addition, in order to examine the speaker variation effect, Post-hoc tests by Fisher’s Least Significant Difference (LSD) were used for pairwise comparison between contexts/sentence types and speakers. Due to limited space of this paper, the result summary was discussed only in text form in section 3.5.

3. Results

3.1 Duration and F0

As shown in Appendix 3, the mixed effect model results on word/syllable duration and F0 values show significance for contexts (p<0.001), tones (p<0.001), speakers (p<0.001) and the interactions: contexts x tones (p<0.001), speakers x tones (p<0.001), contexts x speakers (p<0.001), while the three-way interaction effect contexts x tones x speakers does not reach a significant level. It is noted that the main effects of interest are contexts and contexts x speakers interaction while other factors (such as tones, speakers, context x tones, and speakers x tones) are merely intrinsic F0 and/or speakers’ voice effects and thus will not be examined. The target main effect (i.e., contexts) is further examined in Figures 1 and 2. The target interaction effect (i.e., contexts x speakers) is examined in section 3.5.
Post-hoc analysis (Figure 1 and Appendix 4) shows that word/syllable duration of the statement is significantly longer than those of the eight question types while there was no significant difference in duration among the eight question types. By contrast, F0 values of the word/syllable of the statement is significantly lower than those of the eight question contexts, while there was no significant difference in F0 among the eight question types. It is noted that there are some significant differences between types of questions, but generally the pattern is not clear and the effect is not robust across the five data (F0 and intensity) points. Additionally, they are not of target interest (the main interest is between declaratives and all interrogatives) and thus they are not discussed. In addition, questions without particles and chúng nào questions are chosen for Figures 2 and 4 because all the words and tones in these two question types match well with those of the statements, which allows pair-wise word for word comparison.

Figure 1. Mean of word/syllable duration (ms) and F0 values at 5 points on a word/syllables across 9 contexts. The symbol * means statements significantly different from eight question types at p<0.001.

This result is further confirmed in Figure 2 that shows the tonal contours of the sentences in five tonal contexts. Generally, across five tones and two genders, the statements have lower F0 values than all of the eight questions. However, for clarity of illustration, we only present the tonal contour of the statement and the matching question without particle in Figure 2. By contrast, Figure 2 also shows that the questions and their individual syllables are shorter than those of the statements. In addition, it is also noted that sentence final syllables have fuller contours and wider pitch swings and/or heightened F0 end in interrogative sentences, particularly for level and falling tones, which normally have a falling end in statements.
Figure 2. Mean normalised tonal F0 for tones (in standard deviation (SD) unit on the X-axis) plotted as a function of normalised duration (on the Y-axis) at 5 points on a word/syllable in statement versus question without particle across five tones and genders (11 females and 9 males)

a. Level tones: Anh Tư đi mua hai cây lê ‘Tu went to buy two pears.’
b. Rising tones: Chú Chín đến hái lá mía ‘Uncle Chín comes picking sugarcane leaves.’
c. Falling tones: Bà Hồng trồng vài hàng ngò ‘Mrs Hồng plants few rows of coriander.’
d. Dropping tones: Chị Dậu lượm một bị nặng ‘Sister Dậu found a heavy bag.’
e. Curve tones: Hải Nhỏ gởi Thủy bảy tỉ ‘Hải Nhỏ sent Thủy seven billion.’
3.2. Alternative questions

In order to examine the intonation patterns of alternative ‘or’ questions, we conducted a mixed effect model ANOVA analysis on the duration, F0 range (the tonal F0 max-F0 min) and mean intensity of the two target words in the or questions (the words/syllables before and after the particle hay ‘or’) as compared with other words/syllables in the questions. The fixed effect was word/syllable positions (three positions: the syllable before hay, the last syllable in the sentence (after hay), and other syllables in the sentence). The random effects were speakers (20 speakers), sentences (10 sentences) and words (1829 words/syllables). The results showed significant effects for duration (F(2,139)=98, p<0.001), F0 range (F(2,81)=20, p<0.001) and intensity (F(2,133)=3.1, p<0.05). Apart from the global F0 contours of the ‘or’ questions being higher than those of the statements, post-hoc comparison (Table 1 and Figure 3) showed that the words/syllables before and after the particle hay ‘or’) were lengthened, had larger F0 range and had fuller tonal shapes than the other syllables in the questions. The result on mean intensity only shows that the last words (after the particle hay) have lower intensity. This result suggests that ‘or’ questions are composed of two phrases which both have final lengthening (along with accompanying cues). The last syllable is even longer than the antepenultimate because it is in absolute final position.

	Duration(ms)	F0 range(Hz)	Intensity(dB)				
----------------------	--------------	--------------					
Syllables in sentences	169.6	6.7	85.0	85.0	12.9	70.0	0.9
Syllables before OR (hay)	230.6	12.6	94.2	94.2	13.2	70.2	1.0
Final syllables (after OR (hay))	317.2	11.1	106.7	106.7	13.2	68.6	1.0
Figure 3. Mean normalised tonal F0 for tones (in SD unit on the X-axis) plotted as a function of normalised duration (% on the Y-axis) at 5 points on a word/syllables in ‘or’ questions across five tones and genders (11 females and 9 males)

a. Level tones: Anh Tư đi mua hai cây lê hay nho ‘Did Tu go to buy two pear plants or grape plants?’

b. Rising tones: Chú Chín đến hái lá mía hay lá lúa ‘Did Uncle Chín come picking sugarcane leaves or rice leaves?’

c. Falling tones: Bà Hồng trồng vài hàng ngò hay hành ‘Did Mrs Hồng plant few rows of coriander or spring onion?’

d. Dropping tones: Chị Dậu lượm một bị nặng hay nhẹ ‘Did Dậu find a heavy bag or light bag?’

e. Curve tones: Hải Nhỏ gởi bảy tỉ chổ Thủy hay Hiển ‘Did Hải Nhỏ send seven billion to Thuy or Hiên?’
3.3. Wh-questions

Generally, the statistical analysis (Appendices 3 and 4) showed that the global F0 values of the words/syllables of the statements are significantly lower than those of all the Wh-questions, while there was no significant difference in global F0 among the Wh-question types. However, for clarity of illustration, we only present the tonal contours of the statements and the matching Wh-question with the particle `chừng nào` (when) in Figure 4. In addition, sentence final syllables are shown to have larger F0 range and/or heightened F0 end in the Wh-questions, particularly for the level and falling tones which normally have a falling end in statements.

To further investigate the phenomenon of heightened F0 end in questions, we inspected the F0 contours of sentences and counted the frequency of rising F0 at the end of the questions. The criteria for counting rising F0 end is a clear visible rising F0 movement with a minimum of 10Hz F0 rise at the end of the final words/syllables such as illustrated in Figure 5. The results are reported in Table 2. In addition, a precise quantification of F0 rise is also conducted by calculating F0 range of the final word (F0 end- F0 start). The results which show the mean F0 range and standard deviation by tones and genders are reported in Table 3.

As shown in Tables 2-3 and Figure 5, Southern speakers of Vietnamese tend to raise the F0 at the ends of questions, particularly final words/syllables. Nevertheless, it is subject to speaker variation: some speakers in the study produced the rising F0 end more often than the others. Generally, female speakers produced the rising intonation more frequently than male speakers. This tendency occurs not only in yes-no question without particles but also in all other kinds of questions with particles. As shown in Figure 6, the final words of the questions illustrated have the falling tone (i.e., `nào` and `ngò`), which should have a falling contour, but they were produced with a rising F0 end. It is also noted that there was no evidence of F0 rises at the end of declarative sentences across all speakers, which tend to have a slight final F0 declination, consistent with previous studies (Đỗ et al. 1998; Nguyễn and Boulakia 1999).
Figure 4. Mean normalised tonal F0 for tones (in SD unit on the X-axis) plotted as a function of normalised duration (% on the Y-axis) at 5 points on a word/syllables in statement versus Wh-question with the particle "chừng nào" across five tones and genders (11 females and 9 males).

a. Level tones: Chừng nào anh Tư đi mua hai cây lê? ‘When will Tư go to buy two pear plants?’
b. Rising tones: Chừng nào chú Chín đến hái là mía? ‘When will Uncle Chín come picking sugarcane leaves?’
c. Falling tones: Chừng nào bà Hồng trồng vài hàng ngò? ‘When will Mrs Hồng plant few rows of coriander?’
d. Dropping tones: Chừng nào chị Dậu lượm một bị nặng? ‘When will Sister Dậu find a heavy bag?’
e. Curve tones: Chừng nào Hải Nhỏ gởi Thủy bảy tỉ? ‘When will Hải Nhỏ send Thủy seven billion?’
Table 2. Frequency of rising F0 end by speakers and question types

M: male speakers, F: Female speakers. The total number of sentences per question type is four (for Yes-No questions without particles, alternative questions with the particle *hay*, Wh-questions with the particle *ai*, Wh-questions with the particle *chừng nào* because for the three tones (sac, hoi-nga and nang) a rise is expected anyway and thus these tones were excluded) and ten for the remaining question types.

| Speakers | M1 | M2 | M3 | M4 | M5 | M6 | M7 | M8 | M9 | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 | F11 | Total |
|---------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|-----|-------|
| Yes-No questions without particles | 4 | 1 | 4 | 3 | 1 | 0 | 1 | 1 | 1 | 0 | 4 | 4 | 3 | 4 | 1 | 0 | 4 | 4 | 4 | 4 |
| Questions with the particle *ư* | 2 | 7 | 7 | 9 | 4 | 1 | 1 | 5 | 3 | 8 | 3 | 10 | 10 | 8 | 5 | 10 | 4 | 10 | 10 | 10 |
| Questions with the particle *không* | 4 | 3 | 4 | 3 | 1 | 0 | 0 | 0 | 1 | 0 | 4 | 4 | 4 | 4 | 1 | 2 | 2 | 2 | 4 | 4 |
| Or questions with the particle *hay* | 4 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 2 | 3 | 2 | 4 | 3 | 4 | 3 | 1 | 4 | 2 | 4 | 4 |
| Wh-questions with the particle *ai* | 3 | 2 | 4 | 0 | 1 | 0 | 4 | 0 | 0 | 2 | 3 | 4 | 4 | 4 | 3 | 0 | 2 | 1 | 4 | 4 |
| Wh-questions with the particle *chừng nào* | 10 | 8 | 10 | 0 | 5 | 0 | 0 | 0 | 1 | 0 | 10 | 10 | 3 | 10 | 0 | 9 | 10 | 0 | 10 | 10 |
Figure 5. Illustration of Rising F0 end in Falling tones at the end of questions.

a. Anh Tư đi mua hai cây lê hồi nào ‘When did Tư go to buy two pear plants?’
b. Bà Hồng trồng vài hàng ngò hồi nào ‘When did Mrs Hồng plant few rows of coriander?’
c. Bà Hồng trồng vài hàng ngò ‘Mrs Hồng planted few rows of coriander’

<table>
<thead>
<tr>
<th>Tones</th>
<th>Female Mean</th>
<th>Female SD</th>
<th>Male Mean</th>
<th>Male SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level</td>
<td>33.56</td>
<td>21.18</td>
<td>18.80</td>
<td>15.15</td>
</tr>
<tr>
<td>Falling</td>
<td>18.98</td>
<td>12.74</td>
<td>10.46</td>
<td>6.94</td>
</tr>
<tr>
<td>Dropping</td>
<td>33.15</td>
<td>20.02</td>
<td>17.45</td>
<td>12.71</td>
</tr>
<tr>
<td>Curve</td>
<td>72.46</td>
<td>30.60</td>
<td>63.82</td>
<td>27.26</td>
</tr>
</tbody>
</table>
3.4. Intensity
As shown in Appendix 3, the mixed effect model results on word/syllable intensity values show significance for contexts (p<0.001), tones (p<0.001) speakers (p<0.001) and the interactions: speakers x tones (p<0.001), contexts x speakers (p<0.001), while contexts x tones and the three-way interaction effect does not reach a significant level. As shown in Figure 6 and Appendix 4, intensity values of the words/syllables of the statement is significantly lower than those of the eight question contexts, while there was no significant difference in intensity among the eight question types.

Figure 6. Mean intensity values (dB) at five points on words/syllables across 9 sentence contexts. The symbol * means statements significantly different from eight question types at p<0.001.

3.5 Speaker variation
The post-hoc pairwise comparisons among sentence types for individual speakers show that statements had significantly longer durations, lower F0 and intensity values than all types of questions across all speakers. The post-hoc significant levels ranged from p<0.05 to p<0.001. The significant effects are stronger for F0 and intensity (p<0.001-0.05) and less strong for duration by some speakers (p<0.05).

4. Discussion and conclusion
It is found in this study that communicative functions (i.e., declarative vs. various interrogative forms) are conveyed by the global values of the three acoustic correlates: duration, F0 and intensity. First, the F0 height of the entire sentence is affected (mean F0 being lowest in statement and higher in all forms of questions). This is consistent with findings from previous studies (Hoàng’s 1985; Nguyễn and Boulakia 1999; Brunelle, Ha and Grice 2012). Nevertheless, in Brunelle, Ha and Grice, (2012), this strategy is subject to a great degree of speaker variation: only five speakers in their study show a higher overall range in interrogatives than in corresponding declaratives, while the effect is robust across genders and all speakers in this study. Second, compared to statements, questions are characterised by a faster speed, which is also a strong effect across all speakers, supporting results by Nguyễn and Boulakia (1999). Nevertheless, since the interrogatives in this study always followed declaratives in the wordlist, durational effects found in interrogatives may be partially affected by increased familiarity with the experiment conditions. Third, the intensity of the entire sentence is found to be raised in questions across all 20 speakers, in line with the findings by Brunelle, Ha and Grice (2012).

In addition to the global F0 differences between declarative and interrogatives, local F0 and duration effects are also found. First, final syllables are longer, have fuller contours, wider pitch swings and/or heightened F0 end in interrogative sentences. In particular, heightened F0 end is found for level and falling tones in questions which normally have a falling end in statements. Second, in ‘or’ questions, the words/syllables before and after the particle hay ‘or’ are lengthened, have larger F0
range and have a fuller tonal shape than the other syllables in the questions. In particular, dropping and curve tones of the target words/syllables have wider pitch swing: it falls deeper and rises higher. These local effects are consistent with findings in previous studies on Vietnamese (Đỗ et al. 1998; Nguyễn and Boulakia 1999; Vũ et al. 2006; Brunelle, Ha and Grice 2012) and Chinese – another tone language (Yuan, Shih and Kochanski 2002; XiaoLi, Martin and Boulakia 2004). Nevertheless, these local effects are no more than final-lengthening along with accompanying cues and have less to do with intonation per se such as in Western languages.

Furthermore, the presence of a final rise in questions, which could be interpreted as a high boundary tone, is found in all speakers even though it occurs more frequently in some speakers and less in other speakers. Although there appears to be a great deal of variation in the use of local F0 rises sentence-finally, this can be interpreted as an optional use of intonational high boundary tones, consistent with Brunelle, Ha and Grice (2012)’s results for Northern speakers.

Generally, the results of this study show a more robust difference between declaratives and interrogatives than those of Brunelle, Ha and Grice (2012). The variation in intonation between studies may depend on the data collecting techniques used. It seems to be that contrastive wordlists yield fairly strong intonation effects (this study and Nguyễn and Boulakia 1999), while contextualized frame sentences with distractors and randomization yield patterns that are much more variable (Brunelle, Ha and Grice 2012) and that natural data doesn’t seem to yield clear patterns even if there is clear intonation marking here and there (Brunelle 2016). This suggests that all this is part of Vietnamese intonation grammar, but how it plays out varies depending on how aware of the need for disambiguation speakers are.

In conclusion, our study shows that the difference between declarative and the interrogative intonation in Southern Vietnamese can be accounted for by two mechanisms: an overall higher phrase F0 height for the interrogative, and higher strength values (i.e., larger F0 range and longer duration) of sentence final tones for the interrogative. These intonational strategies are salient not only in interrogatives without particles but also in contexts in which modal particles are present. Therefore, these findings confirmed the results of a great number of the precedent studies (see references), which stated that the tonal languages, like Chinese and Vietnamese, possessing a rich system of modal morphemes, are also characterized by a dimension ‘intonation’ which plays an important role on the syntactical-pragmatic level. Nevertheless, compared to Western languages, this is actually marginal. The results and data of this investigation contribute to the study of Vietnamese prosody, cross-language and cross-dialectal prosodic comparison.

Acknowledgements
We would like to thank the subjects for their voluntary participation in the experiment. We thank Marc Brunelle for providing the Praatscript. We also thank Prof. Mark Alves and the two anonymous reviewers for their constructive and insightful comments and suggestions.

Appendix 1: List of the sentences

Statements
1. Cô Hai đi mua rau răm.
 ‘Miss Hai went to buy herbal mint.’
2. Anh Tư đi mua hai cây lê
 ‘Tư went to buy two pear plants.’
3. Bà Hồng trồng vài hàng ngò
 ‘Mrs Hồng planted few rows of coriander’
4. Dì Hiền lì xì dì Hòa nhiều tiền
 ‘Aunt Hiền gave Aunt Hòa much money’
5. Chú Chín đến hái lá mía
 ‘Uncle Chín came picking sugarcane leaves’
6. Thím Tám muốn bán sáu thùng lúa
 ‘Aunt Tám wanted to sell six rice barrels’
7. Chị Dậu lượm một bị nặng
 ‘Sister Dậu found a heavy bag’
8. Cụ Mận nhận nắn một tượng bụ
 ‘Old Mận accepted to make a big statue’
9. Hải Nhô gởi Thủy bảy tỷ
 ‘Hải Nhô sent Thủy seven billion’
10. Bảy Hiển bỏ mũ ở bãi biển
 ‘Seven Hiển left a hat on the beach’

Yes-No questions without particles
11. Cô Hai đi mua rau răm?
 ‘Did Miss Hai go to buy herbal mint?’
12. Anh Tư đi mua hai cây lê?
 ‘Did Tư go to buy two pear plants?’
13. Bà Hồng trồng vài hàng ngò?
 ‘Did Mrs Hồng plant few rows of coriander?’
14. Dì Hiền li xi đi Hòa nhiều tiền?
 ‘Did Aunt Hiền give Aunt Hòa much money?’
15. Chú Chín đến hái lá mía?
 ‘Did Uncle Chín comes picking sugarcane leaves?’
16. Thím Tám muốn bán sau thùng lúa?
 ‘Did Aunt Tám want to sell six rice barrels?’
17. Chị Dậu lượm một bị nặng?
 ‘Did Sister Dậu find a heavy bag?’
18. Cụ Mận nhận nắn một tượng bụ?
 ‘Did Old Mãn accept to make a big statue?’
19. Hải Nhô gởi Thủy bảy tỷ?
 ‘Did Hải Nhô send Thủy seven billion?’
20. Bảy Hiển bỏ mũ ở bãi biển?
 ‘Did Seven Hiển leave a hat on the beach?’

Questions with the particle ư
21. Cô Hai đi mua rau răm ư?
 ‘Did Miss Hai go to buy herbal mint?’
22. Anh Tư đi mua hai cây lê ư?
 ‘Did Tư go to buy two pear plants?’
23. Bà Hồng trồng vài hàng ngò ư?
 ‘Did Mrs Hồng plant few rows of coriander?’
24. Dì Hiền li xi đi Hòa nhiều tiền ư?
 ‘Did Aunt Hiền give Aunt Hòa much money?’
25. Chú Chín đến hái lá mía ư?
 ‘Did Uncle Chín comes picking sugarcane leaves?’
26. Thím Tám muốn bán sau thùng lúa ư?
 ‘Did Aunt Tám want to sell six rice barrels?’
27. Chị Dậu lượm một bị nặng ư?
 ‘Did Sister Dậu find a heavy bag?’
28. Cụ Mận nhận nắn một tượng bụ ư?
 ‘Did Old Mãn accept to make a big statue?’
29. Hải Nhô gởi Thủy bảy tỷ ư?
 ‘Did Hải Nhô send Thủy seven billion?’
30. Bảy Hiển bỏ mũ ở bãi biển ư?
 ‘Did Seven Hiển leave a hat on the beach?’
Questions with the particle **không**

31. Cô Hai có đi mua rau răm không?
 ‘Did Miss Hai go to buy herbal mint?’
32. Anh Tư có đi mua hai cây lê không?
 ‘Did Tư go to buy two pear plants?’
33. Bà Hồng có trồng vài hàng ngò không?
 ‘Did Mrs Hồng plant few rows of coriander?’
34. Dì Hiền có li xi đi Hội nhiều tiền không?
 ‘Did Aunt Hiền give Aunt Hòa much money?’
35. Chú Chín có đến hái lá mía không?
 ‘Did Uncle Chín come picking sugarcane leaves?’
36. Thím Tám có muốn bán sáu thúng lúa không?
 ‘Did Aunt Tám want to sell six rice barrels?’
37. Chị Dậu có lượm một bị nặng không?
 ‘Did Sister Dậu find a heavy bag?’
38. Cụ Mận có nhận nặn một tượng bụt không?
 ‘Did Old Mận accept to make a big statue?’
39. Hải Nhỏ có gởi Thủy bảy tỉ không?
 ‘Did Hải Nhỏ send Thủy seven billion?’
40. Bảy Hiển có bỏ mũ ở bãi biển không?
 ‘Did Seven Hiển leave a hat on the beach?’

Or questions with the particle **hay**

41. Cô Hai đi mua rau răm hay rau lang?
 ‘Did Miss Hai go to buy herbal mint or sweet potato leavers?’
42. Anh Tư đi mua hai cây lê hay nho?
 ‘Did Tư go to buy two pear plants or grape plants?’
43. Bà Hồng trồng vài hàng ngò hay hành?
 ‘Did Mrs Hồng plant few rows of coriander or spring onion?’
44. Dì Hiền li xi đi Hội nhiều tiền hay vàng?
 ‘Did Aunt Hiền give Aunt Hòa much money or gold?’
45. Chú Chín đến hái lá mía hay lá lúa?
 ‘Did Uncle Chín come picking sugarcane leaves or rice leaves?’
46. Thím Tám muốn bán sáu thúng lúa hay sắn?
 ‘Did Aunt Tám want to sell six rice barrels or manioc barrels?’
47. Chị Dậu lượm một bị nặng hay nhẹ?
 ‘Did Sister Dậu find a heavy bag or light bag?’
48. Cụ Mận nhận nặn một tượng bụt hay nhẹ?
 ‘Did Old Mận accept to make a big statue or a light statues’
49. Hải Nhỏ gởi bảy tỉ cho Thủy hay Hiển?
 ‘Did Hải Nhỏ send seven billion to Thủy or Hiển?’
50. Bảy Hải bỏ mũ ở bãi biển hay chỗ nhỏ Hiển?
 ‘Did Seven Hiển leave a hat on the beach or at little Hiền’s place?’

Wh-questions with the particle **ai**

51. Ai đi mua rau răm?
 ‘Who went to buy herbal mint?’
52. Ai đi mua hai cây lê?
 ‘Who went to buy two pear plants?’
53. Ai trồng vài hàng ngò?
 ‘Who planted a few rows of coriander?’
54. Ai lì xì dì Hòa nhiều tiền?
 ‘Who gave Aunt Hòa much money?’
55. Ai đên hãi là mía?
 ‘Who came picking sugarcane leaves?’
56. Ai muốn bán sâu thùng lúa?
 ‘Who wanted to sell six rice barrels?’
57. Ai lượm một bị nặng?
 ‘Who found a heavy bag?’
58. Ai nhận nặn một tượng bụ?
 ‘Who accept to make a big statue?’
59. Ai gởi Thủy bảy tỉ?
 ‘Who sent seven billion to Thủy?’
60. Ai bỏ mũ ở bãi biển?
 ‘Who left a hat on the beach?’

Wh-questions with the particle cho ai
61. Cô Hai đi mua rau răm cho ai?
 ‘For whom did Miss Hai go to buy herbal mint?’
62. Anh Tư đi mua hai cây lê cho ai?
 ‘For whom did Tư go to buy two pear plants?’
63. Bà Hồng trồng vài hàng ngò cho ai?
 ‘For whom did Mrs Hồng plant few rows of coriander?’
64. Dì Hiền lì xì dì Hòa nhiều tiền cho ai?
 ‘For whom did Aunt Hiền give Aunt Hòa much money?’
65. Chú Chín đến hái lá mía cho ai?
 ‘For whom did Uncle Chín come picking sugarcane leaves?’
66. Thím Tám muốn bán sâu thùng lúa cho ai?
 ‘For whom did Aunt Tám want to sell six rice barrels?’
67. Chị Dậu lượm một bị nặng cho ai?
 ‘For whom did Sister Dậu find a heavy bag?’
68. Cụ Mận nhận nặn một tượng bụ cho ai?
 ‘For whom did Old Mận accept to make a big statue?’
69. Hải Nhỏ gởi bảy tỉ cho ai?
 ‘For whom did Hải Nhỏ send Thủy seven billion?’
70. Bảy Hiền bỏ mũ ở bãi biển cho ai?
 ‘For whom did Seven Hiền leave a hat on the beach?’

Wh-questions with the particle chừng nào
71. Chừng nào Cô Hai đi mua rau răm?
 ‘When will Miss Hai go to buy herbal mint?’
72. Chừng nào Anh Tư đi mua hai cây lê?
 ‘When will Tư go to buy two pear plants?’
73. Chừng nào Bà Hồng trồng vài hàng ngò?
 ‘When will Mrs Hồng plant few rows of coriander?’
74. Chừng nào Dì Hiền lì xì dì Hòa nhiều tiền?
 ‘When will Aunt Hiền give Aunt Hòa much money?’
75. Chừng nào Chú Chín đến hái lá mía?
 ‘When will Uncle Chín come picking sugarcane leaves?’
76. Chừng nào Thím Tám muốn bán sâu thùng lúa?
 ‘When will Aunt Tám want to sell six rice barrels?’
77. Chừng nào Chị Dậu lượm một bị nặng?
 ‘When will Sister Dậu find a heavy bag?’
78. Chừng nào Cụ Mận nhận nặn một tượng bự?
 ‘When will Old Mận accept to make a big statue?’
79. Chừng nào Hải Nhỏ gởi Thủy bảy tỉ?
 ‘When will Hải Nhỏ send Thủy seven billion?’
80. Chừng nào Bảy Hiển bỏ mũ ở bãi biển?
 ‘When will Seven Hiển leave a hat on the beach?’

Wh-questions with the particle hồi nào
81. Cô Hai đi mua rau răm hồi nào?
 ‘When did Miss Hai go to buy herbal mint?’
82. Anh Tư đi mua hai cây lê hồi nào?
 ‘When did Tư go to buy two pear plants?’
83. Bà Hồng trồng vài hàng ngò hồi nào?
 ‘When did Mrs Hồng plant few rows of coriander?’
84. Dì Hiền lì xì dì Hòa nhiều tiền hồi nào?
 ‘When did Dì Hiền give Dì Hòa much money?’
85. Chú Chín đến hái lá mía hồi nào?
 ‘When did Uncle Chín come picking sugarcane leaves?’
86. Thím Tám muốn bán sáu thùng lúa hồi nào?
 ‘When did Aunt Tám want to sell six rice barrels?’
87. Chị Dậu lượm một bị nặng hồi nào?
 ‘When did Sister Dậu find a heavy bag?’
88. Cụ Mận nhận nặn một tượng bự hồi nào?
 ‘When did Old Mận accept to make a big statue?’
89. Hải Nhỏ gởi Thủy bảy tỉ hồi nào?
 ‘When did Hải Nhỏ send Thủy seven billion?’
90. Bảy Hiển bỏ mũ ở bãi biển hồi nào?
 ‘When did Seven Hiển leave a hat on the beach?’
Appendix 2: Backgrounds of participants

<table>
<thead>
<tr>
<th>Participants code</th>
<th>Place of birth of participants</th>
<th>Place of birth of participants’ fathers</th>
<th>Place of birth of participants’ mothers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teachers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F1</td>
<td>An Giang</td>
<td>An Giang</td>
<td>An Giang</td>
</tr>
<tr>
<td>F2</td>
<td>Sài Gòn</td>
<td>Sài Gòn</td>
<td>Sài Gòn</td>
</tr>
<tr>
<td>F3</td>
<td>Sài Gòn</td>
<td>Sài Gòn</td>
<td>Sai Gon</td>
</tr>
<tr>
<td>F4</td>
<td>Sai Gon</td>
<td>Sai Gon</td>
<td>Sai Gon</td>
</tr>
<tr>
<td>F5</td>
<td>Sai Gon</td>
<td>Sai Gon</td>
<td>Sai Gon</td>
</tr>
<tr>
<td>M1</td>
<td>Sai Gon</td>
<td>Sai Gon</td>
<td>Sai Gon</td>
</tr>
<tr>
<td>M2</td>
<td>Sai Gon</td>
<td>Sai Gon</td>
<td>Sai Gon</td>
</tr>
<tr>
<td>M3</td>
<td>Sai Gon</td>
<td>Sai Gon</td>
<td>Sai Gon</td>
</tr>
<tr>
<td>M4</td>
<td>Sai Gon</td>
<td>Sai Gon</td>
<td>Sai Gon</td>
</tr>
<tr>
<td>M5</td>
<td>Sai Gon</td>
<td>Sai Gon</td>
<td>Sai Gon</td>
</tr>
<tr>
<td>Students</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F6</td>
<td>Bến Tre</td>
<td>Bến Tre</td>
<td>Bến Tre</td>
</tr>
<tr>
<td>F7</td>
<td>Sai Gon</td>
<td>Sai Gon</td>
<td>Sai Gon</td>
</tr>
<tr>
<td>F8</td>
<td>Sai Gon</td>
<td>Sai Gon</td>
<td>Sai Gon</td>
</tr>
<tr>
<td>F9</td>
<td>Sai Gon</td>
<td>Sai Gon</td>
<td>Sai Gon</td>
</tr>
<tr>
<td>F10</td>
<td>Sai Gon</td>
<td>Sai Gon</td>
<td>Sai Gon</td>
</tr>
<tr>
<td>F11</td>
<td>Long An</td>
<td>Long An</td>
<td>Long An</td>
</tr>
<tr>
<td>M6</td>
<td>Tiền Giang</td>
<td>Tiền Giang</td>
<td>Tiền Giang</td>
</tr>
<tr>
<td>M7</td>
<td>Sai Gon</td>
<td>Sai Gon</td>
<td>Sai Gon</td>
</tr>
<tr>
<td>M8</td>
<td>Bến Tre</td>
<td>Bến Tre</td>
<td>Bến Tre</td>
</tr>
<tr>
<td>M9</td>
<td>Bến Tre</td>
<td>Bến Tre</td>
<td>Bến Tre</td>
</tr>
</tbody>
</table>
Appendix 3: Mixed effect model results

<table>
<thead>
<tr>
<th>Duration</th>
<th>F01</th>
<th>F02</th>
<th>F03</th>
<th>F04</th>
<th>F05</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contexts</td>
<td>F(8, 9442)=38, p<0.001</td>
<td>F(8, 4688)=39, p<0.001</td>
<td>F(8, 4688)=58, p<0.001</td>
<td>F(8, 4688)=73, p<0.001</td>
<td>F(8, 4688)=57, p<0.001</td>
</tr>
<tr>
<td>Tones</td>
<td>F(4, 5)=3.5, p=0.009 ns.</td>
<td>F(4, 10)=4.6, p=0.001</td>
<td>F(4, 10)=76, p<0.001</td>
<td>F(4, 10)=62, p<0.001</td>
<td>F(4, 10)=15, p=0.001</td>
</tr>
<tr>
<td>Speakers</td>
<td>F(25, 12933)=68, p=0.003</td>
<td>F(25, 12933)=219, p<0.001</td>
<td>F(25, 12933)=236, p<0.001</td>
<td>F(25, 12933)=238, p<0.001</td>
<td>F(25, 12933)=219, p<0.001</td>
</tr>
<tr>
<td>Contexts * tones</td>
<td>F(32, 12933)=7.6, p=0.001</td>
<td>F(32, 12933)=2.4, p=0.001</td>
<td>F(32, 12933)=25.5, p<0.001</td>
<td>F(32, 12933)=23.5, p<0.001</td>
<td>F(32, 12933)=21.5, p<0.001</td>
</tr>
<tr>
<td>Speakers * tones</td>
<td>F(76, 12933)=21.5, p=0.001</td>
<td>F(76, 12933)=40.5, p=0.001</td>
<td>F(76, 12933)=44.2, p<0.001</td>
<td>F(76, 12933)=57.3, p<0.001</td>
<td>F(76, 12933)=54.9, p<0.001</td>
</tr>
<tr>
<td>Contexts * speakers</td>
<td>F(25, 12933)=0.5, p=1 ns.</td>
<td>F(25, 12933)=0.5, p=1 ns.</td>
<td>F(25, 12933)=0.005</td>
<td>F(25, 12933)=0.005</td>
<td>F(25, 12933)=0.005</td>
</tr>
<tr>
<td>Contexts * speakers * tones</td>
<td>F(608, 12933)=0.3, p=1 ns.</td>
<td>F(608, 12933)=12, p=0.045 ns.</td>
<td>F(608, 12933)=0.95, p=0.051 ns.</td>
<td>F(608, 12933)=0.89, p=0.086 ns.</td>
<td>F(608, 12933)=0.87, p=0.086 ns.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>intensity 1</th>
<th>intensity 2</th>
<th>intensity 3</th>
<th>intensity 4</th>
<th>intensity 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contexts</td>
<td>F(5, 9823)=26, p=0.001</td>
<td>F(5, 7836)=38, p=0.001</td>
<td>F(5, 7836)=74, p<0.001</td>
<td>F(5, 8876)=52, p<0.001</td>
</tr>
<tr>
<td>Tones</td>
<td>F(4, 5)=3.9, p=0.076 ns.</td>
<td>F(4, 10)=3.6, p=0.008 ns.</td>
<td>F(4, 10)=3.2, p=0.089 ns.</td>
<td>F(4, 10)=3.6, p=0.089 ns.</td>
</tr>
<tr>
<td>Speakers</td>
<td>F(25, 12933)=68, p=0.003</td>
<td>F(25, 12933)=219, p<0.001</td>
<td>F(25, 12933)=236, p<0.001</td>
<td>F(25, 12933)=238, p<0.001</td>
</tr>
<tr>
<td>Contexts * tones</td>
<td>F(32, 12933)=15, p=0.003</td>
<td>F(32, 12933)=15, p=0.003</td>
<td>F(32, 12933)=18, p=0.009</td>
<td>F(32, 12933)=13, p=0.01 ns.</td>
</tr>
<tr>
<td>Speakers * tones</td>
<td>F(76, 12933)=7.2, p=0.001</td>
<td>F(76, 12933)=4.0, p=0.001</td>
<td>F(76, 12933)=5.9, p<0.001</td>
<td>F(76, 12933)=5.6, p<0.001</td>
</tr>
<tr>
<td>Contexts * speakers</td>
<td>F(25, 12933)=2.8, p=0.001</td>
<td>F(25, 12933)=2.8, p=0.001</td>
<td>F(25, 12933)=2.8, p=0.001</td>
<td>F(25, 12933)=2.8, p=0.001</td>
</tr>
<tr>
<td>Contexts * speakers * tones</td>
<td>F(608, 12933)=0.8, p=1 ns.</td>
<td>F(608, 12933)=0.84, p=0.059 ns.</td>
<td>F(608, 12933)=0.91, p=0.051 ns.</td>
<td>F(608, 12933)=0.89, p=0.086 ns.</td>
</tr>
</tbody>
</table>
Appendix 4: Post-hoc pairwise comparison results.

<table>
<thead>
<tr>
<th>Sentence types</th>
<th>Duration</th>
<th>F01</th>
<th>F02</th>
<th>F03</th>
<th>F04</th>
<th>F05</th>
<th>INT1</th>
<th>INT2</th>
<th>INT3</th>
<th>INT4</th>
<th>INT5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ai</td>
<td>Cho ai</td>
<td>.006</td>
<td>.880</td>
<td>2.63</td>
<td>.962</td>
<td>2.219</td>
<td>2.28</td>
<td>2.80</td>
<td>3.77</td>
<td>.548</td>
<td>.985</td>
</tr>
<tr>
<td>Đích Mục ĐÀO & Anh</td>
<td>Cho ai</td>
<td>.006</td>
<td>.880</td>
<td>2.63</td>
<td>.962</td>
<td>2.219</td>
<td>2.28</td>
<td>2.80</td>
<td>3.77</td>
<td>.548</td>
<td>.985</td>
</tr>
<tr>
<td>Chung nơ</td>
<td>.093</td>
<td>.64</td>
<td>2.67</td>
<td>.93</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>2.00</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>Hỏi nơ</td>
<td>.038</td>
<td>.681</td>
<td>2.08</td>
<td>.79</td>
<td>.962</td>
<td>2.28</td>
<td>2.28</td>
<td>2.80</td>
<td>3.77</td>
<td>.548</td>
<td>.985</td>
</tr>
<tr>
<td>Không</td>
<td>.338</td>
<td>2.45</td>
<td>1.80</td>
<td>.630</td>
<td>2.93</td>
<td>2.93</td>
<td>2.93</td>
<td>2.93</td>
<td>3.93</td>
<td>.933</td>
<td>.933</td>
</tr>
<tr>
<td>Dr</td>
<td>.016</td>
<td>.524</td>
<td>3.63</td>
<td>.67</td>
<td>.87</td>
<td>.87</td>
<td>.87</td>
<td>.87</td>
<td>.87</td>
<td>.87</td>
<td>.87</td>
</tr>
<tr>
<td>Question</td>
<td>.016</td>
<td>.524</td>
<td>3.63</td>
<td>.67</td>
<td>.87</td>
<td>.87</td>
<td>.87</td>
<td>.87</td>
<td>.87</td>
<td>.87</td>
<td>.87</td>
</tr>
<tr>
<td>Statement</td>
<td>.000</td>
</tr>
<tr>
<td>Cho ai</td>
<td>Ai</td>
<td>.006</td>
<td>.880</td>
<td>2.63</td>
<td>.962</td>
<td>2.219</td>
<td>2.28</td>
<td>2.80</td>
<td>3.77</td>
<td>.548</td>
<td>.985</td>
</tr>
<tr>
<td>Chung nơ</td>
<td>.545</td>
<td>.013</td>
<td>.000</td>
<td>.004</td>
<td>.219</td>
<td>2.03</td>
<td>2.03</td>
<td>2.03</td>
<td>2.03</td>
<td>2.03</td>
<td>2.03</td>
</tr>
<tr>
<td>Dr</td>
<td>.000</td>
<td>.063</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>Question</td>
<td>.000</td>
<td>.464</td>
<td>1.02</td>
<td>.230</td>
<td>.394</td>
<td>.394</td>
<td>.394</td>
<td>.394</td>
<td>.394</td>
<td>.394</td>
<td>.394</td>
</tr>
<tr>
<td>Statement</td>
<td>.000</td>
</tr>
<tr>
<td>U</td>
<td>.000</td>
<td>.229</td>
<td>.088</td>
<td>.088</td>
<td>.408</td>
<td>.408</td>
<td>.408</td>
<td>.408</td>
<td>.408</td>
<td>.408</td>
<td>.408</td>
</tr>
<tr>
<td>Chung nơ</td>
<td>Ai</td>
<td>.189</td>
<td>.104</td>
<td>2.47</td>
<td>.63</td>
<td>.507</td>
<td>.507</td>
<td>.507</td>
<td>.507</td>
<td>.507</td>
<td>.507</td>
</tr>
<tr>
<td>Cho ai</td>
<td>.545</td>
<td>.013</td>
<td>.000</td>
<td>.004</td>
<td>.219</td>
<td>2.03</td>
<td>2.03</td>
<td>2.03</td>
<td>2.03</td>
<td>2.03</td>
<td>2.03</td>
</tr>
<tr>
<td>Dr</td>
<td>.000</td>
<td>.063</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>Question</td>
<td>.000</td>
<td>.464</td>
<td>1.02</td>
<td>.230</td>
<td>.394</td>
<td>.394</td>
<td>.394</td>
<td>.394</td>
<td>.394</td>
<td>.394</td>
<td>.394</td>
</tr>
<tr>
<td>Statement</td>
<td>.000</td>
</tr>
<tr>
<td>U</td>
<td>.000</td>
<td>.229</td>
<td>.088</td>
<td>.088</td>
<td>.408</td>
<td>.408</td>
<td>.408</td>
<td>.408</td>
<td>.408</td>
<td>.408</td>
<td>.408</td>
</tr>
<tr>
<td>Hỏi nơ</td>
<td>Ai</td>
<td>.038</td>
<td>.681</td>
<td>2.08</td>
<td>.79</td>
<td>.962</td>
<td>2.28</td>
<td>2.28</td>
<td>2.80</td>
<td>3.77</td>
<td>.548</td>
</tr>
<tr>
<td>Chung nơ</td>
<td>.264</td>
<td>.013</td>
<td>.000</td>
<td>.004</td>
<td>.219</td>
<td>2.03</td>
<td>2.03</td>
<td>2.03</td>
<td>2.03</td>
<td>2.03</td>
<td>2.03</td>
</tr>
<tr>
<td>Không</td>
<td>.076</td>
<td>2.55</td>
<td>8.54</td>
<td>.232</td>
<td>.989</td>
<td>.989</td>
<td>.989</td>
<td>.989</td>
<td>.989</td>
<td>.989</td>
<td>.989</td>
</tr>
<tr>
<td>Dr</td>
<td>.000</td>
<td>.059</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>Question</td>
<td>.000</td>
<td>.442</td>
<td>1.02</td>
<td>.052</td>
<td>.541</td>
<td>.541</td>
<td>.541</td>
<td>.541</td>
<td>.541</td>
<td>.541</td>
<td>.541</td>
</tr>
<tr>
<td>Statement</td>
<td>.000</td>
</tr>
<tr>
<td>U</td>
<td>.000</td>
<td>.209</td>
<td>.083</td>
<td>.083</td>
<td>.408</td>
<td>.408</td>
<td>.408</td>
<td>.408</td>
<td>.408</td>
<td>.408</td>
<td>.408</td>
</tr>
<tr>
<td>Không</td>
<td>.338</td>
<td>2.45</td>
<td>1.80</td>
<td>.630</td>
<td>2.93</td>
<td>2.93</td>
<td>2.93</td>
<td>2.93</td>
<td>3.93</td>
<td>.933</td>
<td>.933</td>
</tr>
<tr>
<td>Chung nơ</td>
<td>.556</td>
<td>.001</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>Hỏi nơ</td>
<td>.076</td>
<td>2.55</td>
<td>8.54</td>
<td>.232</td>
<td>.989</td>
<td>.989</td>
<td>.989</td>
<td>.989</td>
<td>.989</td>
<td>.989</td>
<td>.989</td>
</tr>
<tr>
<td>Dr</td>
<td>.025</td>
<td>.027</td>
<td>.000</td>
<td>.038</td>
<td>.220</td>
<td>0.706</td>
<td>.706</td>
<td>.706</td>
<td>.706</td>
<td>.706</td>
<td>.706</td>
</tr>
<tr>
<td>Question</td>
<td>.025</td>
<td>.027</td>
<td>.000</td>
<td>.038</td>
<td>.220</td>
<td>0.706</td>
<td>.706</td>
<td>.706</td>
<td>.706</td>
<td>.706</td>
<td>.706</td>
</tr>
<tr>
<td>Statement</td>
<td>.000</td>
</tr>
<tr>
<td>U</td>
<td>.926</td>
<td>.926</td>
<td>126</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>Question</td>
<td>Ai</td>
<td>.363</td>
<td>.993</td>
<td>.987</td>
<td>.500</td>
<td>.492</td>
<td>.943</td>
<td>.242</td>
<td>.940</td>
<td>.98</td>
<td>.584</td>
</tr>
<tr>
<td>--------</td>
<td>----</td>
<td>------</td>
</tr>
<tr>
<td>Cha ai</td>
<td>.000</td>
<td>.464</td>
<td>.026</td>
<td>.230</td>
<td>.384</td>
<td>.122</td>
<td>.943</td>
<td>.160</td>
<td>.655</td>
<td>.473</td>
<td>.000</td>
</tr>
<tr>
<td>Chúng não</td>
<td>.007</td>
<td>.454</td>
<td>.239</td>
<td>.525</td>
<td>.074</td>
<td>.004</td>
<td>.807</td>
<td>.005</td>
<td>.000</td>
<td>.176</td>
<td>.178</td>
</tr>
<tr>
<td>Hội não</td>
<td>.000</td>
<td>.442</td>
<td>.023</td>
<td>.052</td>
<td>.614</td>
<td>.341</td>
<td>.024</td>
<td>.003</td>
<td>.000</td>
<td>.000</td>
<td>.000</td>
</tr>
<tr>
<td>Không</td>
<td>.002</td>
<td>.822</td>
<td>.026</td>
<td>.754</td>
<td>.535</td>
<td>.442</td>
<td>.756</td>
<td>.784</td>
<td>.250</td>
<td>.527</td>
<td>.716</td>
</tr>
<tr>
<td>Dr</td>
<td>.256</td>
<td>.264</td>
<td>.425</td>
<td>.027</td>
<td>.020</td>
<td>.157</td>
<td>.680</td>
<td>.386</td>
<td>.088</td>
<td>.260</td>
<td>.000</td>
</tr>
<tr>
<td>Statement</td>
<td>.000</td>
<td></td>
</tr>
<tr>
<td>Ut</td>
<td>.218</td>
<td>.628</td>
<td>.588</td>
<td>.582</td>
<td>.072</td>
<td>.210</td>
<td>.368</td>
<td>.344</td>
<td>.022</td>
<td>.155</td>
<td>.000</td>
</tr>
</tbody>
</table>

Statement	Ai	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
Cho ai	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	
Chúng não	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	
Hội não	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	
Không	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	
Dr	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000		
Question	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000		
Ut	.000	.000	.000	.000	.000	.000	.000	.000	.000			

Ut	Ai	.743	.783	.966	.345	.102	.431	.487	.580	.796	.881	.000
Cho ai	.000	.229	.088	.006	.406	.770	.500	.589	.092	.574	.000	
Chúng não	.041	.069	.018	.416	.464	.041	.984	.000	.000	.552	.000	
Hội não	.000	.209	.083	.013	.192	.762	.176	.000	.000	.013	.495	
Không	.033	.033	.071	.466	.429	.912	.734	.322	.065	.056	.000	
Dr	.926	.528	.045	.093	.634	.872	.888	.924	.088	.722	.000	
Question	.218	.628	.588	.582	.072	.210	.368	.344	.022	.155	.000	
Statement	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	

References

40

Zeng, Xiao -Li, Philippe Martin and Georges Boulakia. 2004. Tones and intonation in declarative and interrogative sentences in Mandarin. *International Symposium on Tonal Aspects of Languages: With Emphasis on Tone Languages*. Where was this published?

Reviewed: Received 30 November 2017, revised text accepted 1 July 2018, published 20 July 2018

Editors: Editor-In-Chief Dr Mark Alves | Managing Eds. Dr Paul Sidwell, Dr Nathan Hill, Dr Sigrid Lew