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Abstract 

Vibrio anguillarum is the aetiological agent of vibriosis, a disease affecting many 

marine fish species. The occurrence of vibriosis in starry flounder, Platichthys 

stellatus, grown in an aquaculture farm has demonstrated the urgent need for 

information on pathogenic infection and immune response for efficient disease 

management. This is the first study to report Vibrio anguillarum isolation and 

infection in starry flounder. We evaluated immune responses, serum biochemical 

parameters, and cumulative mortality of the fish by experimentally challenging 

healthy fish. The expression levels of five immune genes (TNF, TNFR, IL-6, MHC-

II, and CXC) were measured by real-time quantitative PCR. The transcriptional 

levels of the genes encoding tumor necrosis factor (TNF), TNF receptor (TNFR), 

interleukin-6 (IL-6), the major histocompatibility complex (MHC-II), and a 

chemokine (CXC) in the head-kidney of V. anguillarum infected fish were 

significantly upregulated compared with control fish and biochemical indices 

including the alanine aminotransferase, total serum protein, and glucose levels of 

infected fish differed significantly from those of control. Additionally, Starry 

flounder infected with V. anguillarum at 1.67 × 106 and 1.67 × 108CFU/mL 

showed 53%, and 100% mortality, respectively. This study furthers our 

understanding of the immune and serum biochemical alterations, and mortality 

induced by bacterial infections, depending on pathogen concentration. This may 

advance strategies for control of V. anguillarum in cultured starry flounder. 
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Introduction 

Starry flounder Platichthys stellatus, is a cold-water, benthic euryhaline fish that can 

adapt to wide range of environmental salinities ranging from complete freshwater to 

seawater. The fish is found across the North Pacific Ocean spanning the waters of Korea, 

Japan, the Sea of Okhotsk, the Bering Sea, and Alaska to California (Orcutt, 1950; 

Kramer et al., 1995). This important sport and food fish, acclimates well to indoor 

culture, remaining hardy at high densities and exhibiting rapid growth (Ding et al., 

2010). From 2006, commercial culture increased steadily. In 2015, 1,841 tons of fish 

were sold (KOSTAT, 2016). However, as culture has developed, the frequency of 

pathogenic infections has also risen together with high mortality rates. Bacteria are often 

the principal causes (Austin & Austin, 1999).  

Streptococcus parauberis (Cho et al., 2008), S. iniaei, Edwardsiella tarda (Park et 

al., 2016) and E. ictaluri (Tong et al., 2015), cause streptococcal disease and 

Edwardsiellosis, respectively, resulting in severe economic losses (Cho et al., 2008). 

Recently, vibriosis was detected in a starry flounder fish farm located on Jeju Island 

(personal communication). Vibriosis is one of the most prevalent bacterial fish diseases. 

Vibrio anguillarum in particular, which caused major disease outbreaks (Zorrilla et al., 

2003; Afonso et al., 2005) was isolated from farmed populations. This study is the first 

to report V. anguillarum infection in starry flounder grown in an aquaculture farm. 

Several studies have published detection (Avesever, 2015) and control measures; 

these include antibiotics, enriched diets, and vaccination (Teuber, 2001; Li et al., 2015), 

but the best way of preventing and/or controlling diseases in aquaculture farms is by 

strengthening fish defense mechanisms (Lee et al., 2011). In the present study, we 

collected the serum biochemical and immune gene expression data in relation to 

cumulative mortality of experimentally infected starry flounder and identified fish 

immune-related defense mechanisms against the invading bacterial pathogen. The data 

obtained can be effectively utilized in the disease management of starry flounder 

aquaculture. 

 

Materials and methods 

Screening for and identification of the pathogen.  

Infected fish were collected from a fish farm on Jeju Island. Conventional PCR was 

performed to amplify the empA gene (439 bp) of V. anguillarum (Xiao et al., 2009) using 

the primer pair empAF (5′-CAGGCTCGCAGTATTGTGC-3′) and empAR (5′-

CGTCACCAGAATTCGCATC-3′).The isolate was then cultured in Brain-heart infusion (BHI) 

broth for 24 h at 28°C and DNA was then extracted using a QIAmp DNA kit (Qiagen, 

Venlo, The Netherlands) following the manufacturer’s instructions; this DNA served as a 

template. Positive and negative controls (the latter without any template DNA) were 

included. PCR products were sequenced on an ABI 3730XL DNA analyzer (Applied 

Biosystems, Carlsbad, CA, USA) and the results were subjected to multiple sequence 

alignment using ClustalW (http://www.clustal.org) running MEGA v. 5.1 software. 

Fish.  

Starry flounder weighing 57 ± 3.6 g (n = 450) obtained from the Jeju fish farm 

were acclimated in the laboratory for at least 1 week before being experimentally 

infected with V. anguillarum. The seawater temperature and salinity were maintained at 

16 ± 0.5°C and 30.0 ± 0.3% during both the acclimation and experimental periods; the 

water was continuously aerated.  

Challenge, sampling, and cumulative mortality.  

Healthy fish were selected based on overall appearance and vitality (Patel et al., 

2009; Pridgeon et al., 2012) and randomly divided into one control and three infected 
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fish groups (15 fish/group in triplicate). Freshly isolated V. anguillarum was cultured in 

BHI medium at 28°C overnight, washed, and resuspended in sterile saline to obtained 

three different concentrations namely 1.67 × 103, 1.67 × 106 and 1.67 × 108 CFU/ml to 

assess the LD50 concentration. All the infected fish received 0.1 mL of bacterial 

suspension intraperitoneally; control fish received an equal volume of sterile saline. 

Cumulative mortality was recorded in all the challenged fish groups over 15 days and the 

LD50 concentration was determined.  

For the challenge experiment, fish (n=270) were divided into two groups namely 

control and Vibrio anguillarum (Va) challenged (1.67 × 106 CFU/mL) groups (45 

fish/group, in triplicate) and sampled at 0, 1, 3, 6, and 12 h, and at 1, 3, 5 and 7 days, 

post-infection (n= 5 fish). Blood and head-kidney were dissected from each sampled fish 

and stored at appropriate temperature until used (blood at room temperature for serum 

collection was stored at -20°C and head-kidney at -80°C for RNA extraction). 

Serum biochemical analysis.  

Blood from each control and V. anguillarum (LD50 concentration) infected starry 

flounder fish was collected via caudal puncture; the serum was prepared and stored at  

-20°C. The levels of serum biochemicals such as alanine aminotransferase (ALT), alkaline 

phosphatase (ALP), amylase (AMY), bilirubin, total protein (TP), cholesterol, calcium, 

potassium, sodium, phosphorus, glucose, and galactose were measured using a VetScan 

comprehensive diagnostic portfolio (Calxis, Uiwang, South Korea). 

Expression of genes of the immune system.  

Total RNAs were extracted from the head-kidney of control and V. anguillarum 

infected fish using an RNeasy Mini Kit (Qiagen) according to the manufacturer’s 

instructions. We evaluated the expression levels of five genes of the immune system 

namely, tumor necrosis factor receptor (TNFR), tumor necrosis factor (TNF), interleukin 

(IL-6), Major Histocompatability-II (MHCII), and Chemokine (CXC). The β-actin gene 

served as an internal control (Table 1). 

Table 1. Primers used to amplify five immune genes in qPCR 

Gene Primer sequences 5’ to 3’ Product size (bp) References 

TNF – F 

TNF – R 
TNFR – F 
TNFR – R 
MHC-II – F 
MHC-II – R 

IL-6 – F 
IL-6 – R 

CXC – F 
CXC – R 

β-actin - F 
β-actin - R 

TGAGGGATGACCGAACCAC 

GGACTGGCAGCAGAAAGAAGA 
ACCCTGGATGGGCATATCA 
GCTGTCTGTTTGTGGCTTGG 
AGCAAAGTCCGCAGCAAAG 
AGAAGCAGAGGAAACCCAGAGA 

ACAGACACAGCAGATTGCCATAGA 
GCTCCCATCCATCCCTCTTAC 

GATGGGTTTGCTCTCTGTCTT 
TCGTTGCTGTAATGGTGTTCCT 
GATGCTGTTGTAGGTGGT 
AAAGCCAACAGGGAGAAG 

148 

 
213 

 
187 

 

197 
 

123 
 
106 

(Cho et al., 2008) 

 
(Cho et al., 2008) 

 
(Cho et al., 2008) 

 

(Cho et al., 2008) 
 

(Cho et al., 2008) 
 
(Cho et al., 2008) 

 

qPCR was performed using an Mx3000P Real-Time PCR System (Stratagene, San Diego, 

CA, USA) and the SYBR Green technique. Amplification was performed in a 96-well plate; 

each 25-μL reaction volume containing 12.5 μL of 2× Brilliant III Ultra-Fast SYBR Green 

Master Mix (Agilent Technologies, Santa Clara, CA, USA), 2.5 μL of each of the forward 

and reverse primers (10 μM), 1 μL of template solution (1 μg cDNA), and 6.5 μL of 

Diethylpyrocarbonate-treated and sterile filtered water (DEPC-treated) water. The 

thermal profile for qPCR was 95°C for 10 min; followed by 40 cycles of 95°C for 30 s, 

60°C for 60 s, and 72°C for 60 s. Following amplification, a melting curve analysis was 

performed with a thermal profile from 95°C to 65°C at a rate of 0.1°C per second with 

continuous acquisition of fluorescence data. Data analysis was performed using the 
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inbuilt program of the Mx3000P Real-Time PCR System. A standard curve was prepared 

for each gene using the vector containing a specific Platichthys stellatus cDNA fragment 

as template; the relative expression ratio (R) of each mRNA was calculated using the 

formula 2−ΔΔCt = 2−(ΔCt [test]−ΔCt [β-actin]) (Livak and Schmittgen, 2001). Real-time PCR 

efficiencies were measured by amplifying a dilution series of cDNA and applying the 

10(−1/slope) method, the results were consistent between the β-actin and the target genes. 

All data are presented as means with standard deviations. 

Statistical analysis.  

All tests were performed in triplicate. Data were analyzed using SPSS software 

version 18 (SPSS Inc., Chicago, IL, USA); we employed one-way analysis of variance 

followed by Tukey’s test to compare means between individual treatments. A P-value 

<0.05 was considered significant. 

 

Results  

PCR analysis of the empA gene of the pathogenic bacterial strain amplified a 439-bp 

fragment (Fig. 1). 

Figure 1. PCR amplification of an empA gene fragment from Vibrio anguillarum isolated from 

infected fish (in triplicate). Columns: 1 & 10; SiZerTM-100 bp DNA Marker (iNtRON, Korea), 2–7; 

empA gene, 8; negative control, 9; positive control, 10; SiZerTM-100 bp DNA Marker. 

  
We recorded cumulative mortality rates over 15 consecutive days (Fig. 2) and the lethal 

concentration (LD50) of V. anguillarum was identified as 1.67 × 106 CFU/m with the initial 

mortality of 4% at 6 days post-infection (dpi) which rose to 53% by 13 dpi, and then 

ceased. However, 100% mortality was observed in the 1.67 × 108 CFU/mL fish group 

while no fish died in the control and 1.67 × 103 CFU/mL fish group.  

 

Figure 2. Cumulative mortality of starry flounder, Platichthys stellatus, intraperitoneally challenged 

three concentration of V.anguillarum. 

 
 Serum biochemical levels 

The TP, ALT, and glucose levels differed significantly (all P < 0.05) between 

infected and control fish. The TP levels in infected fish decreased significantly (compared 
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with control fish) from 1 to 12 h post infection (hpi); increased significantly from 1 dpi to 

3 dpi; and then decreased gradually (Fig. 3A). The glucose levels in infected fish 

decreased significantly (P < 0.05) to 3 dpi and increased at 5 and 7 dpi (Fig. 3C).  

Figure 3. Serum biochemical levels in V.anguillarum-infected (1.67 × 106 CFU/mL) and control 
starry flounder, P.stellatus. 3A – Total serum protein; 3B – Serum ALT; 3C – Serum glucose. 
Fig. 3A.                                                           Fig. 3B. 

    
Fig. 3C. 

   
No other biochemical parameter differed significantly between control and infected fish 

(see Table 2 in appendix at end of article). 

 Immune genes expression  

 The real-time qPCR data on five genes of the immune system expressed in 

the head-kidney of control and infected fish are shown in Figures 4A–4E. TNF gene 

expression was significantly elevated (P < 0.05) in V. anguillarum infected starry 

flounder fish when compared with control fish.  
Figure 4. Relative mRNA expression levels from the TNF (4A), TNFR (4B), IL-6 (4C), MHC-II (4D) and CXC 
(4E) genes in the head-kidney of control and V. anguillarum-infected starry flounder, P. stellatus, as assessed 
using SYBR Green qPCR. All samples were normalized to the β-actin expression level (internal control). The 
relative levels of target gene expression were calculated using the 2−ΔΔCt method (the Ct value of the target 
gene minus the Ct value of the β-actin gene). Data are means ± S.D. (n = 5). 

Fig. 4A                                                           Fig. 4B 
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Fig. 4C         Fig. 4D 

     
 
Fig. 4E. 

 
 

Discussion 

The amplified 439-bp empA gene (Fig. 1) sequence was 100% similar to that of empA of 

V.anguillarum (Xiao et al., 2009). EmpA encodes a zinc metalloproteinase, a notable 

virulence factor (Norqvist et al., 1990; Milton et al., 1992; Mo et al., 2002; Denkin and 

Nelson, 2004); this sequence serves to both identify V. anguillarum and to estimate its 

virulence level (Xiao et al., 2009).  

About 61% of turbots (Scophthalmus maximus) died when challenged with 8.3 × 106 V. 

anguillarum per fish (Chair et al. 1994). A previous report has shown that the exotoxin 

produced by V. anguillarum plays a vital role in infecting flounders (Mo et al., 2002). 

Moreover, Chair et al., (1994) reported increased mortality after 3 dpi, due to the 

cumulative effect of bacterial action in turbot fed with artemia encapsulated with Vibrio 

anguillarum. These studies assessed the sensitivity or pathogenicity of the bacteria in 

fish. 

The biochemical parameters differ significantly (P<0.05) between the control and 

infected fish groups. These are attributable to impairment of protein synthesis and/or 

liver damage caused by the pathogen (Stoskoph, 1993; Buhler et al., 2000). Similar 

patterns have been reported in tilapia infected with Streptococcus agalactiae (Evans et 

al., 2006; Alsaid et al., 2014) and catfish (Silurus asotus) infected with E. tarda (Yu et 

al., 2010). 

The elevations in serum ALT levels in infected fish evident at all time points 

suggest that the viscera (including the liver and kidney) suffered severe damage (Fig. 

3B), in agreement with previous data on tilapia and Anguilla anguilla infected with S. 

agalactiae (Alsaid et al., 2014) and V. anguillarum (Khalil et al., 2011) respectively. As 

noted in the cited works, we found that the increased serum ALT levels were associated 

with damage to the hematopoietic organs of the starry flounder. Similar ALT elevations 

following bacterial infection have been reported in the Atlantic salmon Salmo solar 



 Pathogenicity and immune response of P.stellatus infected with V.anguillarum 7 

 

(Waagbø et al., 1988), Nile tilapia Oreochromis niloticus (Chen et al., 2004), and brook 

trout Salvelinus fontinalis (Řehulka and Minařík, 2007). 

 The expression of five immune genes like TNFR, TNF, IL-6, MHC-II, and CXC, 

differ significantly in infected fish. Particularly elevated expression of TNF gene in V. 

anguillarum infected starry flounder. A similar result in Chinook salmon infected with V. 

anguillarum was reported (Ching et al. 2010). TNF, a pro-inflammatory cytokine, is 

expressed soon after infection and plays a key role in regulating inflammation (Zhang et 

al., 2012). Many fish TNFs have been produced in bacteria as monomers, dimers, and 

trimers; the recombinant TNFs activate fish macrophages/phagocytes, enhancing their 

ability to kill microbes (Zou et al., 2003). In vitro TNF treatment of trout head-kidney 

leucocytes and monocytes/macrophages triggered the expression of several immune 

system genes associated with inflammation and the antimicrobial response (Hong et al., 

2013; Zou et al., 2003a). In the present study, TNF also induced expression of TNFR, IL-

6, and MHC-II in infected fish; the levels were higher than those of control fish. 

Moreover, in zebrafish, TNF regulated cell survival and mediated resistance to infectious 

disease (Wiens and Glenney, 2011). 

CXC gene expression was significantly upregulated in infected fish by 3 hpi, and fell by 6 

hpi, but remained elevated (compared with control fish) at all time points. Chemokines 

are a large family of small (8–12 kDa) proteins orchestrating lymphocyte migration and 

adhesion. Chemokines organize the immune system, coordinating the actions of primary 

and secondary lymphoid organs under both physiological and pathological conditions 

(Stein and Nombela-Arrieta, 2005). Fish cytokines also play roles in development and 

hematopoiesis, attracting leucocytes to sites of infection and activating the antimicrobial 

mechanisms of such cells to counter invaders (Zou and Secombes, 2016).  

 Thus, activation of five genes of the immune system and the notable changes 

in the levels of various serum markers of starry flounder infected with V. anguillarum 

indicate that the fish mount a significant immune response to the pathogenic challenge. 

It is important to enhance host immune systems to prevent pathogenic invasions. 

However, prevailing statistical variation could be improved through further challenge 

experiments with various pathogens. More studies on this highly profitable aquaculture 

species must further be conducted. Hopefully, the results of this study could lead to 

further revelations on the mechanisms related to the immune responses in P. stellatus 

and hence, their diseases management strategies.  
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Appendix: 
 
Table 2. Serum biochemical indices of Vibrio anguillarum infected and control starry flounder, Platichthys stellatus at different time points. 

Parameters 1hpi 3hpi 6hpi 12hpi 1dpi 3dpi 5dpi 7dpi 

Control infected Control infected Control infected Control infected Control infected Control infected Control infected Control infected 

Albumin (g/dL) 
ALKP (U/L) 

Amylase (U/L) 

Bilirubin (mg/dL) 
Bun (mg/dL) 

Calcium (mg/dL) 

Phosphorus(mg/dL) 
Creatinine(mg/dL) 

Na+ (mmol/L) 

K+ (mmol/L) 
Globulin (g/dL) 

1.65±0.10 
24±0.13 

5 

0.25±0.01 
6.5±0.04 

10.9±0.15 

10.4±0.01 
0.2 

157.5±0.2 

4.25±0.06 
1.35±0.19 

1.4±0.15 
22±0.10 

5 

0.2±0.15 
6±0.07 

9.8±0.1 

10.4±0.3 
0.2 

148±0.1 

4.2±0.15 
1.1±0.12 

1.35±0.11 
20.5±0.12 

5 

0.3±0.1 
6.5±0.17 

9.8±0.02 

9.15±0.15 
0.2 

151.5±0.1 

4.1±0.04 
1.55±0.02 

1.45±0.17 
21±0.02 

5 

0.25±0.08 
10±0.15 

9.35±0.12 

7.45±0.07 
0.2 

145.5±0.2 

3.55±0.17 
1.25±0.07 

1.5±0.1 
21.5±0.10 

5 

0.32±0.05 
6.4±0.12 

9.4±0.01 

8.56±0.16 
0.2 

143±0.05 

4.02±0.11 
1.43±0.04 

1.85±0.16 
23±0.03 

5 

0.24±0.03 
7±0.15 

9.2±0.13 

6.45±0.18 
0.2 

141±0.15 

3.3±0.24 
1.06±0.08 

1.85±0.2 
25.5±0.15 

5 

0.3±0.07 
4.5±0.11 

9.6±0.14 

7.75±0.08 
0.2 

147±0.15 

3.8±0.3 
0.75±0.1 

1.42±0.02 
22±0.12 

5 

0.2±0.01 
6±0.17 

9.8±0.04 

10.4±0.11 
0.2 

148±0.21 

4.2±0.21 
1.1±0.15 

1.25±0.03 
19±0.11 

5 

0.2±0.11 
6.5±0.03 

9.6±0.15 

7.95±0.15 
0.2 

147.5±0.04 

4.55±0.15 
1.45±0.14 

1.4±0.12 
20.5±0.17 

5 

0.3±0.15 
6.5±0.15 

9.4±0.17 

6.65±0.05 
0.3 

150.5±0.17 

4.45±0.02 
0.95±0.21 

1.2±0.10 
22±0.15 

5 

0.2±0.12 
8±0.05 

10.2±0.4 

6.9±0.13 
0.2 

150±0.11 

3.9±0.15 
1.7±0.05 

1.35±0.09 
27±0.12 

5 

0.2±0.02 
4±0.04 

9.9±0.11 

8.55±0.15 
0.2 

146±0.12 

4.1±0.07 
1.55±0.04 

1.1±0.10 
13±0.17 

5 

0.2±0.05 
6±0.12 

8.8±0.05 

6.3±0.14 
0.2 

144±0.19 

3.8±0.08 
1.2±0.15 

1.47±0.11 
20±0.16 

5 

0.2±0.08 
5±0.16 

9.35±0.02 

7.43±0.07 
0.2 

145±0.15 

3.95±0.03 
1.37±0.16 

1.15±0.2 
11±0.1 

5 

0.2±0.04 
5±0.11 

8.2±0.03 

6.1±0.1 
0.2 

142±0.04 

3.73±0.1 
1.1±0.09 

1.34±0.14 
19±0.15 

5 

0.2±0.06 
5.5±0.15 

9.15±0.1 

7.3±0.02 
0.2 

143±0.15 

3.82±0.06 
1.25±0.11 
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