The Open Access Israeli Journal of Aquaculture - Bamidgeh

As from January 2010 The Israeli Journal of Aquaculture - Bamidgeh (IJA) will be
published exclusively as an on-line Open Access (0OA) quarterly accessible by all
AquacultureHub (http://www.aquaculturehub.org) members and registered individuals
and institutions. Please visit our website (http://siamb.org.il) for free registration form,
further information and instructions.

This transformation from a subscription printed version to an on-line OA journal,
aims at supporting the concept that scientific peer-reviewed publications should be made
available to all, including those with limited resources. The OA IJA does not enforce author
or subscription fees and will endeavor to obtain alternative sources of income to support
this policy for as long as possible.

Editor-in-Chief
Dan Mires

Published under auspices of
The Society of Israeli Aquaculture and
Marine Biotechnology (SIAMB),
University of Hawaii at Manoa Library
and
University of Hawaii Aquaculture
Program in association with
AquacultureHub
http://www.aquaculturehub.org

Editorial Board

Sheenan Harpaz  Agricultural Research Organization

Beit Dagan, Israel

Dept. of Zoology
Tel Aviv University
Tel Aviv, Israel

Zvi Yaron

Angelo Colorni National Center for Mariculture, IOLR

Eilat, Israel -.nun.ﬂn nYYXIWA Aninua .,,
B 3
Rina Chakrabarti Aqua Research Lab g
Dept. of Zoology H g
University of Delhi : g
B sOCIETY OF ISRAELI A UA(ULTUI\:
Ingrid Lupatsch Swansea University «

Singleton Park, Swansea, UK

The Hebrew University

Jaap van Rijn
Faculty of Agriculture

Spencer Malecha

Daniel Golani

Emilio Tibaldi

Copy Editor
Ellen Rosenberg

Israel

Dept. of Human Nutrition, Food
and Animal Sciences
University of Hawaii

The Hebrew University of Jerusalem
Jerusalem, Israel

Udine University
Udine, Italy

UNIVERSITY

of HAWAI'T" é
MANOA
LIBRARY AquacultureHub.org

AguacultureHub

educate «leamn - share - engage

ISSN 0792 - 156X
U Israeli Journal of Aquaculture - BAMIGDEH.

PUBLISHER:

Israeli Journal of Aquaculture - BAMIGDEH -
Kibbutz Ein Hamifratz, Mobile Post 25210,
ISRAEL
Phone: + 972 52 3965809
http://siamb.org.il


http://siamb.org.il/
http://www.aquaculturehub.org/
http://siamb.org.il/
http://www.aquaculturehub.org/

The Israeli Journal of Aquaculture — Bamidgeh 55(4), 2003, 283-297. 283

KEY FACTORS INFLUENCING JUVENILE QUALITY
IN MARICULTURE: A REVIEW

William Koven*

Israel Oceanographic and Limnological Research, The National Center for Mariculture,
P.O.B. 1212, Eilat 88112, Israel

(Received 1.10.03, Accepted 30.11.03)

Key words: cortisol, essential fatty acids, fish larvae, growth, juvenile quality, metamorphosis,
pigmentation, thyroxine

Abstract

Environmental (temperature, salinity) and nutritional (DHA, EPA, ArA, vitamin A, phospholipids,
iodine) factors during larvae rearing largely dictate the successful transformation of larvae to
juveniles during metamorphosis which, in turn, determines juvenile quality. Studies on Atlantic
halibut, turbot and Japanese flounder report higher metamorphic success, in terms of pigmen-
tation, eye migration and general development, when copepods, rather than enriched Artemia,
were fed to larvae. Copepods have higher levels of vitamin A, which is required for the synthe-
sis of rhodopsin in the retina, a critical visual pigment in the rods necessary for vision at low light
intensities. Deficient rhodopsin affects neural transmission from the retina via the central nervous
system that triggers pituitary production of melanophore stimulating hormone leading to reduced
melanin synthesis and pigmentation deficiency. DHA, an abundant PUFA in copepods, is also
vital to vision as it provides the membrane fluidity necessary for rhodopsin to function when stim-
ulated by light. The essential fatty acids EPA and ArA are more involved in eicosanoid synthe-
sis. These highly potent metabolites are thought to regulate the mechanisms involved in the
release of melanophore stimulating hormone and pigmentation. Thyroid hormones play a major
role in regulating many developmental processes that occur during metamorphosis. Immersing
different age marine fish larvae into various concentrations of thyroid hormone has been shown
to synchronize and shorten the duration of metamorphosis in a dose dependent manner in
species such as grouper. However, the effect of this immersion on survival varied with the type
of thyroid hormone, dose and timing of application. In some species, such as the European
seabass (Dicentrarchus labrax), females grow up to 40% faster than males. However, when this
species is intensively cultured, masculinization can result in a 70-90% male population. A num-
ber of studies have shown that manipulating temperature and salinity during larviculture can
result in higher quality juveniles, i.e., a higher percent of faster growing females.

* Tel: +972-8-6361443, e-mail: Koven@agri.huji.ac.il
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Introduction

The quality of juvenile fish or fry is mainly
defined by survival and growth performance
during grow-out as well as resistance to stress
and disease. The stocking of robust juveniles
generally leads to improved fish production,
better flesh quality and higher market prices.
Juvenile quality is largely dictated by nutrition-
al and environmental conditions during larvae
rearing from first feeding to the onset of meta-
morphosis. Metamorphosis is the transition
from larvae to the definitive adult form. During
metamorphosis, there are changes in the
digestive, respiratory and neural systems as
well as in the eye and muscle structure
(Jobling, 1995). It is during this time that scales
develop, pigmentation strikingly increases and
marked changes in behavior are evident. It is
becoming increasingly accepted that fish lar-
vae that successfully complete the gamut of
physiological and morphological changes
occurring during metamorphosis transform into
rapidly growing high quality juveniles (Pittman
et al., 1998). Consequently, the factors impact-
ing larvae rearing have far reaching implica-
tions on much later stages of fish growth and
production levels.

Rapidly growing larvae have greater
metamorphic success

It has been widely observed that rapidly grow-
ing marine larvae generally metamorphose
earlier, faster and more successfully than
slower growing and less robust cohorts
(Neess and Lie, 1998). Larvae that have a
higher growth rate characteristically have ele-
vated total lipid levels prior to transformation
(Youson, 1988; Koven et al., 1990; Kao et al.,
1997; Pfeiler, 1999,). As the processes occur-
ring during metamorphosis exact a high ener-
getic price, fish that are able to rapidly mobi-
lize significant stores of lipid have an advan-
tage in that they can more effectively satisfy
maintenance, growth and developmental
requirements (Fernandez-Diaz et al., 2001)
than slower growing individuals. Slow-growing
larvae frequently have lower total lipid levels
and, often, high mortality at the end of trans-
formation (Christensen and Korsgaard, 1999).

The essential requirement for dietary high-

ly unsaturated fatty acids (HUFA) of the n-3
series, primarily docosahexaenoic acid (DHA,
22:6n-3) and eicosapentaenoic acid (EPA,
20:5n-3), for larval growth and survival in
commercial marine species is well document-
ed (Watanabe, 1982; Izquierdo, 1996;
Sargent et al., 1999). The phospholipid form
of these fatty acids, particularly DHA, plays a
critical structural role in enhancing the func-
tion of biomembranes in the cells of most tis-
sues. In gilthead seabream, Koven et al.
(1990) demonstrated a direct correlation
between dietary n-3 HUFA, their selective
incorporation into tissue phospholipids and
weight gain in larvae (Fig. 1a,b). This was
coupled with an effect of essential fatty acids
on the total lipid level (Fig. 1c), which likely
facilitated the transformation to the juvenile
stage. Dhert et al. (1990) found high mortality
during metamorphosis in seabass (Lates cal-
carifer) larvae fed diets deficient in EPA and
DHA while metamorphosis was accelerated in
fish reared on EPA and DHA rich diets offered
up to 20 days after hatching. Similarly, a
dietary deficiency or absence of DHA or EPA
resulted in high mortality, abnormal develop-
ment and incomplete metamorphosis in turbot
(Estévez and Kanazawa, 1995).

Although a direct correlation between the
beneficial effects of dietary phospholipids and
successful metamorphosis has not been
clearly shown, phospholipid supplementation
clearly promotes growth and survival during
the larvae and juvenile stages of marine fish
(Coutteau et al.,, 1997). Recent studies
(Fontagné et al., 1998; Hadas et al., 2003)
indicate that dietary phosphatidylcholine, the
main phospholipid, improves the mobilization
and transport of digested fats from the entero-
cytes of the digestive tract to body tissues,
probably by enhancing lipoprotein synthesis.
Apart from contributing to energy accumula-
tion, increasing dietary phospholipids would
also increase the availability of the essential
fatty acids EPA, DHA and ArA.

Good larvae growth and survival leading
to metamorphic success can also be a conse-
guence of beneficial environmental conditions
during larvae rearing. A case in point was
illustrated with gilthead seabream larvae by
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Fig. 1. The effects of different levels of rotifer n-3 HUFA (EPA and DHA) on (a) growth, (b) tissue phos-
pholipids of EPA and DHA and (c) total lipids in gilthead seabream larvae. Treatments with different letters
are significantly different (p<0.05). Modified from Koven et al., 1990.
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Tandler et al. (1995) who found that reducing
the rearing salinity in the ambient Red Sea
water (40%.) to 25%. significantly improved
survival, growth and the incidence of swim
bladder inflation (Fig. 2a,b,c). Similarly,
Specker et al. (1999), working on metamor-
phosis in summer flounder, found that larvae
grown at 8%. grew better and developed
faster than fish reared in 30 and 38%.. In ret-
rospect, perhaps these results are not surpris-
ing since in both cases such larvae are found
naturally in estuarine areas with characteristi-
cally low salinities. Larvae exposed to rearing
salinities higher than their natural environment
would be metabolically strained by the
increased energetic costs of osmoregulation
that would subsequently reduce their growth
and survival potential and ultimately their
metamorphic success.

The effect of live food type

on metamorphosis
The most striking examples of the profound
morphological and physiological changes that
take place during metamorphosis are in flat-
fish. Larvae transform from symmetric pelagic
swimming individuals into asymmetric benthic
fish after undergoing a 90° rotation of the body
and one-sided pigmentation. The fish lie on
the unpigmented side while the eye from this
flank migrates to the opposite pigmented ocu-
lar side. Poorly pigmented or albino fish, a
conspicuous anomaly following incomplete
metamorphosis, have little market value and
cause significant losses to the industry
(Estévez and Kanazawa, 1995) even though
the growth rate of malpigmented flat fish
appears to be unaffected (Seikai and Sinoda,
1981; Heap and Thorpe, 1987; Seikai et al.,
1987).

Studies on Atlantic halibut, turbot and
Japanese flounder have reported greater
metamorphic success in terms of pigmenta-
tion, eye migration and general development
when pre-metamorphosing larvae were fed
natural marine zooplankton comprised mostly
of copepods than enriched Artemia (Seikai,
1985; McEvoy et al., 1998; Pittman et al.,
1998; Shields et al., 1999). Not surprisingly,
natural marine zooplankton are universally

regarded as a superior food than Artemia nau-
plii, as they are a richer source of essential
fatty acids (Fig. 3), phospholipids,
carotenoids, free amino acids and inorganic
compounds such as iodine. However, no one
has yet developed an industrial protocol for
growing natural zooplankton such as cope-
pods in sufficiently high quantities to meet the
demands of commercial mariculture. This
means that Artemia nauplii, despite its nutri-
tional limitations, remain the standard live
feed for larvae worldwide primarily due to the
availability of Artemia cysts on the market and
established procedures for hatching and
enriching the nauplii with essential fatty acids.

There appears to be a critical window of
opportunity, which may be species specific,
for feeding copepods to larvae to positively
influence metamorphic success. In Atlantic
halibut, Artemia and copepods served equally
well as growth promoters for the first 46 days
of feeding (Harboe et al., 1998; McEvoy et al.,
1998; Shields et al., 1999). However, after 46
days, larvae that continued feeding on
Artemia began to show differences in eye
migration and pigmentation (Neess et al.,
1995) while those that had fed on copepods
transformed normally. Neess and Lie (1998)
claimed that the copepod window for halibut
was 2 to 3 weeks after the first feeding while
normally pigmented halibut can be obtained
when copepods were fed for only 7 days
before larvae reach the myotome height of 2.5
mm associated with eye migration at the initial
stage of metamorphosis. The critical period
for Japanese flounder was around 15 days
after hatching or about 7.5 mm in total length
(Seikai et al., 1987) while the pigmentation
window for larvae of the yellowtail flounder
was up to 9 mm in total length (Copeman et
al.,, 2002). In plaice, on the other hand, the
duration of feeding natural zooplankton rather
than the exact timing appears to be the rele-
vant factor (Dickey-Collas, 1993). These find-
ings suggest a nutritional factor found in cope-
pods and not in Artemia that initiates normal
metamorphosis. Researchers initially focused
on the essential fatty acids EPA and DHA as
well as vitamin A (Estévez and Kanazawa,
1995). Although Artemia nauplii are enriched
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with n-3 HUFA before being fed to fish larvae,
the amounts and ratios of these fatty acids
that occur naturally in copepods may be a
more favorable trigger for the onset of meta-
morphosis.

The effect of diet on physiological
and morphological processes during
metamorphosis
A number of studies (Miki et al., 1989,
1990; Kanazawa, 1991,1993) on flatfish
report that the enrichment of Artemia with
markedly high levels of vitamin A prevented
albinism and generally improved pigmenta-

tion, although there was a tendency of exces-
sive amounts of vitamin A to produce skeletal
deformities (Estévez and Kanazawa, 1995).
In fact, immersing Japanese flounder larvae
in retinoic acid just prior to the onset of meta-
morphosis stimulated the formation of adult
type chromatophores on both sides of the fish
(Miwa and Yamano, 1999). It was also
observed that dietary vitamin A supplementa-
tion corresponded with retinal development in
Japanese flounder (Seikai et al.,, 1987;
Seikai, 1992; Kanazawa, 1993) and that high
rates of albinism were correlated with retinal
abnormalities. Vitamin A is required for the
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Fig. 3. Typical arachidonic acid (ArA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)
contents and DHA/EPA and EPA/ArA ratios in Artemia and natural marine zooplankton fed to Atlantic hal-
ibut. Pairs marked with an asterisk significantly differed (p<0.05). Modified from Hamre et al., 2002.
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synthesis of rhodopsin in the retina, a critical
visual pigment in the rods necessary for
vision at low light intensities. Halibut larvae
ingesting Artemia had considerably fewer rod
cells than those feeding on copepods (Fig. 4;
Shields et al., 1999). In support of this,
Estévez et al. (1997) found that the abnormal
retinal epithelium of malpigmented Japanese
flounder was nutritionally induced and result-
ed in visual deficiency. If rhodopsin synthesis
is interrupted by deficient vitamin A, this could
in turn affect the neural transmission from the
retina via the central nervous system that trig-
gers pituitary production of melanophore

stimulating hormone leading to reduced
melanin synthesis and pigmentation deficien-
cy.

Membrane fluidity of the photoreceptor rod
cells can effect rapid conformational changes
that occur in rhodopsin once it is stimulated by
photon absorption. These changes are neces-
sary to initiate a cascade of events culminat-
ing in the hyperpolarization of neural mem-
branes and the propagation of a signal down
the central nervous system that stimulates the
pituitary to produce melanophore stimulating
hormone. Tissue phospholipid DHA is associ-
ated with membrane fluidity due to the unique
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Fig. 4. The number of rods and cones and rod/cone ratios in retinas of halibut larvae fed enriched
Artemia or Eurytemora velox copepods. The rod/cone ratio in larvae fed copepods was significantly higher
(p<0.01) than in larvae fed Artemia. Modified from Shields et al., 1999.
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structural configuration of this fatty acid and is
found in high concentrations in photorecep-
tors of the retinal pigment epithelium (Bell and
Dick, 1993). Estévez and Kanazawa (1996)
found that the brain and eyes of poorly pig-
mented fish had less phospholipid DHA than
those of normally pigmented individuals.
Vitamin A, DHA and phospholipids have all
been deemed essential for the promotion of
normal pigmentation (Miki et al., 1990;
Dickey-Collas, 1993; Reitan et al., 1994) and
all three are found in high concentrations in
copepods (Estévez and Kanazawa, 1995,
McEvoy et al., 1998; Shields et al., 1999).

As DHA has a more dominant role in
growth (Watanabe, 1993) and membrane
structure than EPA, a number of authors
reported that a high dietary DHA/EPA ratio
was frequently associated with good pigmen-
tation (Rainuzzo, 1993; Reitan et al., 1994).
Reitan et al. (1994) suggested that a dietary
DHA/EPA ratio of 1.7 would result in 90% pig-
mentation. However, there are inconsisten-
cies in the literature regarding the efficacy of
dietary DHA/EPA as a true index of expected
pigmentation  success (Estévez and
Kanazawa, 1996; Copeman et al., 2002).
Estévez and Kanazawa (1995) found a high
correlation coefficient between the DHA/EPA
ratio in Artemia and successful turbot pigmen-
tation but noted a poor association between
this parameter and the DHA/EPA ratio in tur-
bot fry. In a more recent study, Estévez et al.
(1999) found no relationship between
DHA/EPA in rotifers, Artemia or the brain and
pigmentation rate in turbot and, in fact, found
that fish fed rotifers and Artemia with low
DHA/EPA ratios had pigmentation rates high-
er than 80%. Similarly, McEvoy et al. (1998)
found no significant difference in DHA/EPA
ratios between tissues from normal and
malpigmented halibut fry. Hamre et al. (2002)
reported that Atlantic halibut fed copepods
containing elevated DHA levels had a higher
incidence of normal pigmentation than fish fed
Artemia with a lower level of DHA, despite the
fact that the DHA/EPA ratios in these zoo-
planktons are very similar. A number of work-
ers concurred that absolute levels of DHA and
arachidonic acid (ArA, 20:4n-6) have more

biological relevance to pigmentation success
and are more selectively assimilated into
neural tissue than EPA (Naess and Lie, 1998;
Hamre et al., 2002). Consequently, studies
generally now focus on the DHA/ArA and
EPA/ArA ratios in tissues.

In contrast to DHA, the fatty acids EPA
and ArA play a minor role in membrane func-
tion and are more involved in eicosanoid syn-
thesis. Eicosanoids represent a broad range
of highly biologically active metabolites that
include mainly prostaglandins, thromboxanes
and leukotrienes. These hormones are
involved in various areas of cellular regulation
including control of fluid and electrolyte fluxes,
the cardiovascular system, reproductive func-
tion, the neural system (Mustafa and
Srivastava, 1989; Bell et al., 1994) and meta-
morphosis. However, ArA and EPA compete
for binding to cyclooxygenase enzymes that
synthesize eicosanoids such as
prostaglandins. ArA is the preferred substrate
for eicosanoid production and 2-series
prostaglandins derived from ArA (PGE)) are
more biologically active than the 3-series syn-
thesized from EPA (PGEjs; Sargent et al.,
1999). This means that PGE3 appears to have
an important role regulating levels of the more
potent PGE, metabolites.

During metamorphosis in flatfish, ArA
eicosanoids stimulate the synthesis of cCAMP
and cGMP in the brain and eyes (Estévez
and Kanazawa, 1996). The second messen-
ger cAMP signals the dispersion of pigment
while cGMP binds to Na+ channels in the
outer segment membrane of rods causing
these channels to remain open. When
rhodopsin in the rods is light activated, a
series of enzymatic events occur which con-
verts cGMP to 5’GMP. Consequently, the
cGMP intracellular concentration drops,
resulting in the closing of the Na+ channels.
This causes the rod photoreceptors to
become hyperpolarized, which propagates a
central nervous system signal that stimulates
pituitary melanophore stimulating hormone
and pigmentation (Estévez and Kanazawa,
1996). If cGMP levels are regulated by ArA
derived eicosanoids, then different tissue
EPA/ArA ratios would affect the available lev-
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els of cGMP and subsequently the neural and
neural endocrinological control of metamor-
phosis and pigmentation success.

The effective tissue EPA/ArA ratio signal-
ing normal release of melanophore stimulat-
ing hormone and pigmentation may be
species and developmental stage specific.
Estévez et al. (1997) found that increasing
ArA produced higher growth and pigmentation
success in Japanese flounder juveniles after
45 days of feeding. Sargent et al. (1999) pro-
posed that striped bass might require an
EPA/ArA ratio of less than 1:3 during meta-
morphosis and seabass a ratio of 1:1. On the
other hand, significant correlations were found
between the ArA concentration in turbot and
halibut brains and increased incidence of
malpigmentation (McEvoy et al., 1998;
Estévez et al., 1999) where the greatest num-
ber of normally pigmented fry occurred when
the brain EPA/ArA ratio was over 4:1.

Dietary influence on cortisol and
thyroxine hormones during metamorphosis
Recent studies on gilthead seabream suggest
that increased levels of dietary ArA down-reg-
ulated cortisol levels during acute or handling
stress and up-regulated basal cortisol during
chronic stress (Koven et al., 2001, 2003).
Cortisol not only restores the hydromineral
balance but also catabolizes energy yielding
substrates during stress responses. This
means that dietary ArA may also modulate the
characteristically high cortisol peak observed
in fish larvae at the onset of metamorphosis
(Tanaka et al., 1995). In this case, cortisol
likely mobilizes lipid reserves that, as previ-
ously mentioned, are required to meet the
considerable energy demands of this devel-
opmental stage. As metamorphosis is a
process lasting weeks in some species, high
cortisol levels may be a response to the
chronic stress of morphological and physio-
logical changes, suggesting that higher
dietary ArA levels at this time may be
required.

The high cortisol peak during early meta-
morphosis in fish is followed by increased lev-
els of thyroid hormones (TH), thyroxine (T4)
and triiodothyronine (T3; Tanaka et al., 1995).

TH have a major role in regulating many of the
developmental processes that occur during
metamorphosis such as gastric development
in Japanese flounder (Miwa et al., 1992) and
eye migration in halibut (Solbakken et al.,
2002). However, cortisol and TH appear to act
synergistically on many developmental
processes such as fin reabsorption in flounder
(de Jesus et al., 1990).

Since Lam (1980) first reported the posi-
tive effect of T4 treatment on larval develop-
ment and survival of tilapia, numerous trials
using exogenous TH have been conducted
with the aim of developing practical proto-
cols. Brown et al. (1988, 1989) showed that
survival of striped bass larvae could be
improved by supplementing TH in the eggs
via maternal injections of a high dose of T3 a
few hours prior to spawning. In a later study,
improved survival of Hawaiian threadfin lar-
vae was observed after immersion of newly
fertilized eggs in solutions of T3 and combi-
nations of T3 and cortisol (Brown and Kim,
1995). However, similar treatment with T4 in
the rabbitfish had no effect (Ayson and Lam,
1993). Recent publications reported that
immersing pre-metamorphosing grouper
(Epinephelus coiodes) in various concentra-
tions of T4 and T3 resulted in the synchro-
nization and shortening of the duration of
metamorphosis in a dose dependent man-
ner, independent of larval size (de Jesus et
al., 1998). Their TH doses were comparable
to those inducing metamorphosis in flounder
larvae (Inui and Miwa, 1985; Miwa and Inui,
1987) and the appearance of black stripes
and settlement in the red sea bream (Hirata
et al., 1989). The accelerated onset of pig-
mentation and differences in swimming
behavior among TH-treated larvae suggest
an influence of this hormone on the peripher-
al development of the neuromuscular system
(Brown and Kim, 1995). Yamano et al. (1991)
showed that T4 treatment accelerated the
shift from larval to juvenile type muscle pro-
teins in the Japanese flounder, coincident
with the onset of benthic behavior.
Reabsorption of the dorsal fin rays of grouper
larvae was also advanced by TH treatment.
The effect of T3 was more pronounced than
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that of T4 in all age groups but was depen-
dent on the dose. Similar observations were
reported for flounder (Miwa and Inui, 1987,
de Jesus et al., 1990). Most reports show
that TH improve survival rates and acceler-
ate growth and development in teleost larvae
(Brown and Bern, 1989; Lam, 1994). On the
other hand, de Jesus et al. (1998) reported
that the effect of TH immersion on survival
varied with the type, dose and timing of appli-
cation of the TH. Old et al. (1992) reported
that Ts-induced precocious expression of
thyroid hormone receptor in Xenopus
embryos resulted in the development of
abnormalities. Deleterious effects of early TH
treatment were found in the larvae of striped
bass (Huang et al., 1996) and seabass
(Nugegoda et al., 1994). The emerging pic-
ture from these studies is that hormone
immersion is an effective protocol causing
synchronization and shortening of metamor-
phic development and enhancement of juve-
nile quality in commercially valuable fish
although this approach may prove costly in
large-scale operations and raise justifiable
guestions among an increasingly environ-
mentally aware public.

Arguably, a better approach to stimulating
TH synthesis in pre-metamorphosing larvae is
through the diet. Another reason why larvae
fed natural zooplankton such as copepods
metamorphose more successfully is that cope-
pods contain up to 700 times more iodine, the
major precursor of TH synthesis, than Artemia
nauplii (Fig. 5; Solbakken et al., 2002). On the
other hand, Artemia and copepods have simi-
lar levels of tyrosine (an amino acid precursor
of TH) and selenium (necessary for the con-
version of T4 to T3) and a small though signifi-
cant difference in the TH amino acid precur-
sor, phenylalanine (Solbakken et al. , 2002).

Improving juvenile quality by
controlling sex differentiation during
larval development
One of the characteristics of the commercially
grown European seabass (Dicentrarchus
labrax) is that females can grow up to 40%
faster than males. This means that producing
female dominant populations would represent

a significant increase in production biomass
and profitability. However, when this species
is grown in intensive culture, the fish typically
exhibit massive masculinization where 70-
90% of the population can be males. Studies
carried out at our laboratory in Eilat found that
exposing larvae to lower temperatures during
the first 50 days after hatching or juveniles 50-
100 days after hatching had, at a much later
stage of development, a significantly higher
incidence of females. Pavlidis et al. (2000)
similarly found that 13-15°C during very early
developmental stages affected sex differentia-
tion in seabass, resulting in a consistently
higher proportion of females. These studies
emphasize that higher quality juveniles, in
terms of a higher percent of faster growing
females, can be attained by temperature
manipulation during larviculture.

In nature, larvae and juvenile seabass grow
in temperate estuaries (Kelly, 1988) or lagoons
(Barnabé, 1976) and can be exposed to salini-
ties of 10-20%o. Saillant et al. (2003) found that
when seabass of 44 mm were transferred from
low to high salinity, the percentage of males in
the population increased. Poor larval perfor-
mance in higher salinities may be linked to a
limited osmoregulation capacity that improves
in older fish (Tandler et al., 1995; Harel et al.,
1998). Saillant et al. (2003) suggested that
osmotic stress and possibly higher cortisol lev-
els during a critical stage of fish development
may mobilize energy reserves away from the
development of large nutrient-rich ovaries and
into the less energy demanding growth of male
gonads. These authors also claimed that long-
term growth of seabass juveniles is not influ-
enced by salinity when temperature is high (ca
22°C), indicating that the rearing temperature
may be a more dominant factor influencing
energy allocation than salinity and supporting
recent studies at our institute. These results
suggest that both low temperature and low
salinity may increase the incidence of females
in a population.

In summary, environmental (e.g., temper-
ature, salinity) and nutritional (e.g., DHA,
EPA, ArA, vitamin A, phospholipids, iodine)
factors during larvae rearing determine the
degree of successful transformation from
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Fig. 5. lodine, selenium and free amino acid concentrations in wild zooplankton and Artemia. lodine val-
ues significantly differed at the p<0.00001 level while phenylalanine values significantly differed at the

p<0.05 level. Modified from Solbakken et al., 2002.

larva to juvenile during metamorphosis.
Metamorphic success is the main element
influencing juvenile quality which, in turn,
affects the cost and level of fish production at
the end of the grow-out period.
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