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Abstract 
Various types of microbubble generators for use in aquaculture facilities for 
aeration. The aeration system is essential for high-density shrimp cultivation. 
However, there is a blockage in the microbubble generator aeration system, 
and generally, aeration at high densities requires considerable electrical power. 
In this study, modifications were made to various diameter nozzles and various 
pump power for microbubble generators. This research was conducted to 
determine the best microbubble by comparing the nozzle diameter and pump 
power. To achieve this goal, three diameter nozzles are combined with three 
different powers with an airflow rate of 2.5 LPM. The best combination of 32.5 
mm nozzle diameter and 160-watt pump power. Produce bubbles ranging from 
5.6 – 82 µm, with an increased oxygen concentration time of 60 minutes. 
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Introduction 
Currently, shrimp farming technology has reached high-density (Fleckenstein et al., 2020; 
Tierney et al., 2020; Xu et al., 2018) and super-intensive (Hostins et al., 2015; Maicá et 
al., 2014; Paena et al., 2018; Rahim et al., 2018; Suantika et al., 2018; Syah et al., 2017). 
Stocking density post larva in super-intensive shrimp culture ranges between 500 – 1250 
ind/m2 (Syah et al., 2017). This is in line with government policies to increase shrimp 
production. According to Syah et al. (2017), the orientation of the future aquaculture 
system with "low volume high density" is super-intensive vannamei shrimp culture 
technology.  
 An essential factor in supporting the successful aquaculture of super-intensive 
vannamei shrimp is the aeration system. In aquaculture, super-intensive shrimp is a 
combination of aeration systems: pond bottom aeration (blower) and surface aeration 
(paddlewheel) (Makmur et al., 2018; Rahmawati et al., 2021). Aeration process diffusion 
of oxygen determines the availability of dissolved oxygen (DO) in water (Boyd et al., 2018). 
This is done to maintain DO concentrations in aquaculture. DO is one of the most critical 
parameters affecting water quality (Kumar et al., 2013).  
 One alternative application is high-performance aerators with microbubble technology. 
This technology is better known as microbubble generators (MBG or MBGs) (Afisnaa et al., 
2017; Alfarraj et al., 2020; Basso et al., 2018; Juwana et al., 2019; Liew et al., 2020). 
MBG can produce micro-sized bubbles (Deendarlianto et al., 2015; Rizaldi et al., 2019) 
and accelerate to increase DO concentration (Jeon et al., 2018; Rahmawati et al., 2021), 
and save energy (Parmar & Majumder, 2013). There are various methods for generating a 
microbubble technology: Using venturi (Dey et al., 2020; Huang et al., 2021; Wang, Shuai, 
Zhang, et al., 2020; Wilson et al., 2021; Yadav et al., 2019), using Nozzle (Alam et al., 
2018; Cheng et al., 2019; Ferrando et al., 2021; Khan et al., 2020; Kim et al., 2018; Kim 
& Lee, 2021; Lee et al., 2019; Lin et al., 2018; Wu et al., 2021), using Orifice (Basso et 
al., 2018; Daskiran et al., 2019; Deendarlianto et al., 2015; Juwana et al., 2019; Kataoka 
et al., 2020; Liew et al., 2020; Miao et al., 2021; Morito & Makuta, 2018; Rizaldi et al., 
2019; Sadatomi et al., 2012), and used DAF (Kim et al., 2018; Kiuru, 2001). However, 
various microbubbles have a reasonably small dimension size, and some use compressors 
or blowers for air distribution. Thus, the application of microbubble as aeration in 
aquaculture often has a blockage. The use of blowers as air distribution is less effective. 
 Therefore, this research aims to solve the problem of MBG as an aerator in aquaculture. 
This innovative MBG named "DIYM O2Rs" has a simple design that is easy to manufacture 
and install. This experimental study determines the performance in increasing oxygen, 
which can be used as an alternative aeration system in aquaculture or other aeration 
systems. 
 

Materials and Methods 
The setup of the experiment is shown in Figure 1. The test section used a rectangular 
prism filled with water (120 cm × 100 cm × 116 cm). The airflow rate was controlled using 
a 2.5 LPM. The Speed gauge airflow SHLLJ Shunhuanliu Liangyi Biao, range = 0 – 3 LPM. 
Pump using submersible Resun PG; 160, 200, and 250 Watt. Three models of Nozzle have 
used dimensions: 22.4, 26.45, and 32.5 mm, while the air hole was 22.4 mm (Figure 1).  
 The dissolved oxygen meter (YSI Professional Pro Plus) was used to measure DO 
concentrations. Meanwhile, temperature and salinity were recorded along with DO with 
data transmission settings every 5 minutes. In addition, the DO meter was also connected 
to laptops with already installed YSI software applications for easy observation. 
 Chemicals used in the experiment. The performance of the MBG aeration, the DO in 
the test water, needs to be eliminated until its concentration reaches 0.0 mg L-1.  Therefore, 
20 mg L-1 of sodium sulfite (Na2SO3) were used for the water deaeration through oxidation, 
together with 0.5 mg L-1 of cobalt chloride (CoCl2) as catalyst (Adel et al., 2019). After 
that, the water was stirred until the DO concentration reached 0.0 mg L-1. 

 Aeration experiments. Aeration experiments were conducted in tanks of IBC 1,100 L 
using clean tap water. Initially, the tap water was deoxygenated using sodium sulfite and 
cobalt chloride, as mentioned earlier. However, it can also be performed using seawater. 
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When the DO concentration reached 0.0 mg L-1, the MBG was operated, and simultaneous 
readings were taken periodically until DO increase from zero to almost 90% saturation. 
Furthermore, DO measurements were performed using two YSI Proplus meters, and 
approximately 20 readings were taken every 5 minutes. Meanwhile, the DO deficit was 
calculated through the slope of the best fit line, which is the natural logarithm (Y) is plotted 
against time (X) (Jayraj et al., 2018). 
 The experimental apparatus features a camera that uses Nikon D7200, 60 mm Lens, 4 
mm manual Flash power lighting, 2-piece Tronic Light with Full Power setting, Holly land 
wireless transmission type MARS 400s, using one lens aperture speed 1/160f. 
 
 

 

 
Figure 1 Experiment device different Nozzle	

 
Calculation of Analysis 
 
The dissolved oxygen deficit equation is as follows: 

DO  deficit=Cs-Cm          
Where: 
Cs - the dissolved oxygen concentration at saturation (mg L-1) 
Cm - the measured dissolved oxygen concentration (mg L-1). 
Furthermore, the oxygen transfer coefficient equation (Boyd, 1986; Ruttanagosrigit et al., 
1991) is described as follows:  

KLaT=
ln(DO  deficit10)-ln(DO  deficit70)

(t70-t10)/60       

Where: 
KLaT - oxygen transfer coefficient (hour-1). 
Ln - natural logarithm. 
DO deficit10 - DO deficit at 10% saturation (mg L-1). 
DO deficit70 - DO deficit at 70% saturation (mg L-1). 
t10 - time at 10% saturation (min). 
t70 - time at 70% saturation (min). 
the coefficient of oxygen transfer at a temperature of 20 oC is calculated using the equation 
(ASCE, 2007; Stenstrom & Gilbert, 1981): 

KLa20=KLaT/1.024T20                     
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Where: 
KLa20 - oxygen transfer coefficient at temperature 20oC;  
1.024 - Theta factor. 
The oxygen transfer rate is using the equation (ASCE, 2007; Boyd & Tucker, 1998): 

SOTR=(KLa20)(Cs20)(V) #10-3$                    
Where: 
SOTR - the standard oxygen transfer rate (kg of oxygen hour-1). 
Cs20 is the concentration (mg L-1) of dissolved oxygen at saturation and at 20oC, at a 
measurable salinity. 
V - the volume of the tank (m3). 
10-3 - conversion factor (kg into g).  
Furthermore, SOTR is defined as the amount of oxygen the aerator transfers into the water 
per hour. The standard aeration efficiency (SAE) is the oxygen transfer rate per unit power 
input (ASCE, 2007). It is calculated as follows: 

SAE=
SOTR

Power Input            

The standard oxygen transfer efficiency (SOTE) refers to the OTE at a given gas rate. The 
gas flow value is required to determine the OTE of the system, and the potentially suitable 
test devices include orifice, venturi, and pitot tubes used with appropriate traversing 
methods (ASCE, 2007; Eckenfelder et al., 2002; Heber et al., 2020). The equation is as 
follows: 

SOTE=
SOTR
Wair

100 

Where:  
Wair  = mass flow rate (kg/s). 
Wair  = (1.23 kg/m3) Qs,  
where Qs  = airflow speed (m3/s). 
 

Results 
	

	 	

          (a)    (b) 
Figure 2 Comparison diameter Nozzle 32.5 mm and power: (a) Deficit; and (b) Saturation Oxygen 
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(c) (d) 
	

Figure 3 Comparison diameter Nozzle 26.45 and power: (c) Deficit; and (d) Saturation Oxygen 
	

	 	

(e) (f) 

	
Figure 4 Comparison diameter Nozzle 22.4 mm and power: (e) Deficit; and (f) Saturation Oxygen 
 
The experimental temperature between 28 - 29 oC and seawater content salinity 33 – 34 ppt. Data 
interpolation is carried out when the concentration of oxygen saturation in salinity 33 and 34 is not 
present in the table (Boyd and Tucker 1998, p. 77). The results of the data calculation and the 
performance of various diameter Nozzles and power can be seen in Table 1.  
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Table 1 Performance aeration Microbubble Generator 
Power 

(Watt) 

Airflow rate 

(LPM) 

Nozzle diameter 

(inchi) 

KLaT 

(h) 

KLa20 

(h) 

SOTR 

(gO2/h) 
SAE (gO2/kwh) SOTE 

250 

2.5 

 
  

1/2 2.56 2.20 17.63 70.52 0.43 

3/4 2.85 2.29 18.55 85.61 0.45 

1 2.91 2.33 18.95 75.80 0.46 

       

200 

1/2 2.64 2.15 17.44 87.19 0.42 

3/4 1.99 1.67 13.49 67.47 0.32 

1 2.67 2.24 18.16 90.80 0.42 

       

160 

1/2 2.46 2.07 16.67 118.33 0.40 

3/4 1.87 1.54 12.46 77.88 0.30 

1 3.03 2.57 20.73 129.55 0.49 

 
 

	
	 	

(g) (h) 

	
	
	
	
	
	
	
	
	
	
	
 
	

							(i) 
	

Figure 5 Comparison of production diameter bubble: (e) Diameter nozzle 32.5 mm (h) Diameter 
Nozzle 26.45 mm (1) Diameter nozzle 22.4 mm. 
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Discussion 
The results deficit and saturation oxygen of various diameter Nozzles and power can be 
seen in the Figure 2, 3, and 4. Natural logarithms of oxygen deficits known as the log 
deficit method (Yadav et al., 2021) were plotted versus aeration time Figure 2, 3, and 4. 
From there are figures, it is seen that the diameter of the Nozzle and power influence give 
a limited effect on the occurrence of oxygen deficit. The larger the Nozzle diameter and 
the lower the power, the faster the time it takes. The tank was well mixed by the aerator 
microbubble generator. There is a steady decrease in oxygen deficit, although not all lines 
touch all points 6.15 – 6.57, and 55 - 90 min of aeration is drawn from the calculation 
results. The following parameters dissolved oxygen deficit from the water, the air-water 
interface area, aerator design, and the two phases' contact time (Bunea et al., 2017; 
Mohan et al., 2021). The fastest time to achieve oxygen saturation at a diameter of 32.5 
mm nozzle with a power of 160 Watt is due to non-constant fluctuations in airflow rate. 
 When airflow is oxygenated into a microbubble generator resulting in lower deficit 
oxygen, this is due to a great transfer rate, but the oxygen saturation value is decreased. 
The results of the calculation are seen in the graph of Figure 2, 3, and 4 visible result of 
the oxygen concentration of downstream saturation required at the rate of transfer. The 
result tests were conducted at downstream saturation oxygen concentrations 0.01 – 0.26 
mg/L with inlet concentrations <0.5 mg/L. When saturation oxygen levels of 5.3 or 5.47 
mg/L in the testing container, high less oxygen transfer occurs for diameter Nozzle with 
different power than if deficit oxygen values nearer 0.1 – 1.23 mg/L were acceptable. The 
lowest deficit oxygen was obtained by 0.75 mg/L on a 1-inch nozzle with a power of 250 
Watt.  
 As seen from the Figure 2, 3, and 4, dissolved oxygen concentration increases 
overtime on different nozzles and power. The diffusion rate is gradual, and the increase in 
dissolved oxygen concentration slows down when the oxygen concentration has reached 
saturation. According to Dai et al. (2020), the increased concentration of dissolved oxygen 
in the water can reduce the oxygen content per unit area. It is estimated that all three 
microbubble configurations provide proper aeration. Power pumps for aeration are also 
very influential. According to Daskiran et al. (2019), aeration has little effect on power 
generation. However, the high use of power can increase operational costs in cultivation. 
Aerator-related electricity costs account for about 15% (Vinatea & Carvalho, 2007), 45 – 
75 % (Mohan et al., 2021), and 85 – 89% (Syah et al., 2017) of the total production costs 
in shrimp farms. 
 The time history plot of the dissolved oxygen concentration at different nozzle 
diameters and power is shown in Figure 2, 3, and 4. The green line in the Figure 
represented the saturated dissolved oxygen and deficit oxygen concentration when the 
microbubble was higher deficit oxygen and saturation oxygen concertation combination 
with (diameter nozzle 1-inch with pump power 160 Watt). As shown in Figure, dissolved 
oxygen increases rapidly up to 20 – 30 minutes after pump operation, then increases 
gradually until the oxygen concentration is saturated at 80 – 90 minutes. The tendency of 
dissolved oxygen changes over time. According to Wang et al. (2020), a breakdown event 
causes the tiny bubbles to change into large bubbles. The size distribution of the bubble 
becomes homogeneous. 
 The variation of oxygen transfer coefficient KLaT with changing diameter nozzle with 
power pump different value is presented in Table 1. It can be seen from Table 1 that the 
oxygen transfer coefficient varies with the comparison of various diameters of the Nozzle. 
The KLaT also varies with each power pump 250;200;160 Watt. The maximum KLaT was 
found to be 3.03. There is a tendency for an increase in the diameter of the Nozzle and 
inversely proportional to the pump's power against the mass transfer of oxygen, while the 
maximum KLa20 amount obtained was 2.57 occurs in a power pump of 160 and a diameter 
of 1-inch Nozzle. Pambudiarto et al.(2020) are only able to produce KLaT ranges between 
0.03  to 0.08. Cheng et al. (2019) produce KLa20 ranges from 0.8 to 1.8. Zhang et al (2020) 
produce KLa20 ranges from 0.8 and KLaT  0.05 – 0.09. 
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 Based on the use of microbubble, aeration of the nozzle diameter generator affects the 
transfer of oxygen mass. Important factors that affect the transfer of oxygen mass in a 
microbubble generator are the type of air, airflow rate, and installation on the inlet or pump 
outlet. The effect of air flow rate can accelerate the process of mass oxygen transfer 
(Sakamatapan et al., 2021; Taukhid et al., 2021; D. Zhang et al., 2020). The diameter of 
the Nozzle affects friction. The slip phenomenon results in a severe decrease in the critical 
flow rate and a more slip effect (Ferrando et al., 2021). It is seen that the larger the 
diameter of the Nozzle, shows well the performance.  This is in line with the research (Han 
et al., 2020; Lee et al., 2019) microbubble aeration resulted in increased performance at 
each increase in air diameter and speed. In general system's primary oxygen mass transfer 
index includes KLaT, KLa20 SOTR, dan SOTE (ASCE, 2007; Boyd et al., 2018; Du et al., 
2020). Based on the needs of SOTR, it can easily know the combination of Nozzle diameter 
and power then SAE and SOTE value.  
 Many kinds of aerators and commercial ponds usually have a larger power unit 
(Abdelrahman & Boyd, 2018). However, this study with low power can also be used as 
aeration. Wherein general, the installation of microbubble equipment is installed on the 
pump outlet. While the microbubble installer on the pump inlet results in reverse to the 
use of various pump power. According to Abdelrahman and Boyd (2018), the higher the 
pump's power, the higher the performance system aeration system.  Kumar et al.(2018) 
high power microbubble performance are comparable to low power. 
 Distribution bubbles of various diameters Nozzle and power pump studied. All 
treatments produce bubbles of at least 4.5 µm and a maximum of 92.0 µm. There is caused 
by a two-phase flow that passes through the pump impeller, and the resulting bubble is 
more diminutive.  According to (Perissinotto et al., 2021), two-phase liquid mixtures 
through the impeller pump will form a cavity and produce smooth bubbles. In general, the 
mean bubble diameter of producing bubbles is in the microbubble category. According to 
ISO (2017), the category of microbubble-sized bubbles ranges from 1 – 100 µm. The most 
bubble percentage at bubble diameter of 5.4 – 5.6 µm ranging from 30 – 49% of 
microbubble generators, respectively. The bubble distribution is shown in Figure 5. 
 Accurate bubble characterization is an essential component of any experimental 
investigation concerning the use and development of microbubble generators.  It is of 
increasing importance as applications such as aeration in aquaculture and water treatment. 
There are still research microbubble generators that produce bubbles larger than standard. 
Comparative research (Huang et al., 2021) produces bubbles ranging from 0.02 mm to 
1.28 mm, although it uses a smaller nozzle diameter and compressor assistance as an air 
supply. Sakamatapan et al. (2021), using a nozzle diameter of 30 mm, produces bubble 
diameters ranging from 50 – 130 µm. Ling et al., (2020), producing bubbles ranging from 
50 – 1000 µm, also uses air supply with the help of compressors. While (Li et al., 2021) 
the bubble produces 200 – 1000 µm. Pambudiarto et al. (2020) was observed a 
microbubble generator in the range of 100 – 300 µm.  
 

Conclusion 
 

 A microbubble generator is a simple component of the device, and it can increase 
oxygen concentration faster. Do not use compressors for air needs able to produce bubbles 
sized according to standards and minimize blockages—microbubble with 160 watts of pump 
power with a combination of 32.5 mm nozzle diameter. This microbubble can be used as 
an alternative aeration system in fishery cultivation or energy-efficient water treatment. 
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