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The Hawaiian-Emperor Chain 

INTRODUCTION 

Intraplate volcanism within the Pacific Plate not generated 
at spreading plate margins is most obvious in Hawaii and the 
Hawaiian-Emperor volcanic chain. This chain forms a global 
relief feature of the first order. This chapter consists of five sepa
rate sections that summarize the volcanism and geology of 
Hawaii and the Hawaiian-Emperor chain. 

Less obvious but probably greater in overall volume are 
other seamounts and seamount chains scattered across the north
ern and. bstern Pacific basin. Some of these appear to owe their 
origin to intraplate volcanism, but many probably formed at 
mid-ocean ridges. Batiza (this volume, Chapter 13) discusses 
these other, largely submarine, volcanoes. 

The Island of Hawaii lies at the southeastern end of the 
Hawaiian-Emperor volcanic chain-a dogleg ridge, largely sub
marine, stretching nearly 6,000 km across the north Pacific 
Ocean basin. From Hawaii the chain extends northwestward 
along the Hawaiian Ridge to a major bend beyond Kure Atoll. 
North of the bend the chain continues in a northward direction as 
the submarine ridge of the Emperor Seamounts. Volcanoes are 
active at the southeast end of the chain and become progressively 
older to the northwest, reaching ages of 75 to 80 million years at 
the north end of the Emperor Seamounts. Most of this volcanic 
chain, with an estimated area of 1,200,000 km2, lies beneath the 
ocean. Only the Hawaiian Islands and a few atolls ofthe Hawai
ian Ridge, totaling some 16,878 km2, rise above the sea (Plate 5). 

The first section of this chapter, by David Clague and Brent 
Dalrymple, discusses the overall tectonics, geologic history, and 
origin of the Hawaiian-Emperor volcanic chain. The petrology 
and ages of the rocks dredged from the seamounts and collected 
from the islands indicate that the entire chain has evolved from 
volcanic activity similar to that presently occurring on the island 

of Hawaii plus some minor late-phase volcanism occurring up to 
a few million years after the main volcanic activity. 

The second section, by Thomas Wright and David Clague, 
presents a comprehensive summary of the petrology of Hawaiian 
lavas. The mineral and chemical composition of these lavas and 
the sequence in which they are erupted indicate a preshield stage 
of alkalic basalt, a main stage of tholeiitic basalt, a postshield 
stage of alkalic basalt, and a rejuvenated stage of sttoQgly under
saturated alkalic lava. 

The third section, by Fred Klein and Robert Koyanagi, 
discusses the seismicity and tectonics of the Island of Hawaii 
where active volcanism and subsidence make that island the 
focus of most of the dynamic processes occurring along the 
Hawaiian-Emperor volcanic chain. Most of the many earth
quakes appear to be directly or indirectly related to active 
volcanism. 

The fourth section, by Robert Decker, discusses the physical 
processes by which magma of the main stage of Hawaiian shield 
building may form, ascend, and erupt. The historical activity of 
Kilauea and Mauna Loa volcanoes provides the main evidence 
for inferring these dynamic processes. 

The fifth section, by Donald Thomas, presents a synthesis of 
the hydrothermal systems formed at the summit and along the 
east rift woe of Kilauea Volcano. Interactions of fresh and saline 
ground water with recurring intrusions of basaltic magma at 
depths of only a few kilometers produce complex geothermal 
reservoirs. 

Many topics about Hawaiian volcanism and the geology of 
the Hawaiian-Emperor chain are not discussed in these five sec
tions. It is hoped that the extensive references provided at the end 
of this chapter will help to cover these omissions. 

Clague, D. A., and Dalrymple, G. B., 1989, Tectonics, geochronology, and origin of the Hawaiian-Emperor Chain; 
Wright, T. L, and Clague, D. A., 1989, Petrology of Hawaiian lava; 
Klein, F. W., and Koyanagi, R. Y., 1989, The seismicity and tectonics of Hawaii; 
Decker, R. W., 1989, Magma and eruption dynamics; 
Thomas, D. M., 1989, Hydrothermal systems in Hawaii; 

in Winterer, E. L., Hussong, D. M., and Decker, R. W., eds., The Eastern Pacific Ocean and Hawaii: Boulder, Colorado, Geological Society of America, The Geology 
of North America, v. N. 
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TECTONICS, GEOCHRONOLOGY, AND ORIGIN OF THE HAWAIIAN-EMPEROR VOLCANIC CHAIN 

David A. Clague and G. Brent Dalrymple, U.S. Geological Survey, 345 Middlefield Road, Menlo Park, California 94025 

INTRODUCTION 

The Hawaiian Islands-the seamounts, banks, and islands 
of the Hawaiian Ridge-and the seamounts of the Emperor 
Seamounts (Fig. 1) include more than 107 individual volcanoes 
with a combined volume slightly greater than 1 million km3 
(Bargar and Jackson, 1974). The chain is age progressive, with 
still active volcanoes at the southeastern end; the volcanoes at the 
northwestern end are about 75 to 80 million years old. The 
volcanic ridge is surrounded by a symmetrical deep as much as 
0.7 km deeper than the adjacent ocean floor (Hamilton, 1957). 
The deep is in turn surrounded by the broad Hawaiian Arch (see 
Plate 5). 

At the southeast end of the chain lie the eight principal 
Hawaiian Islands. Place names for the islands and seamounts in 
the chain are shown in Figure l or listed in Table 2. The Island of 
Hawaii includes the volcanoes of Mauna Loa, which last erupted 
in 1984, and Kilauea, which erupted in 1987. Loihi Seamount, 
located about 30 km off the southeast coast of Hawaii, is also 
active and considered to be an embryonic Hawaiian volcano 
(Moore and others, 1979, 1982). Hualalai Volcano on Hawaii 
and Haleakala Volcano on Maui have erupted in historical times. 
Between Niihau and Kure Island, only a few of the volcanoes rise 
above the sea as small volcanic islets and coral atolls. Beyond 
Kure the volcanoes are entirely submerged beneath the sea. Ap
proximately 3,450 km northwest of Kilauea, the Hawaiian chain 
bends sharply to the north and becomes the Emperor Seamount 
chain, which continues northward another 2,300 km. 

It is now clear that this remarkable feature was formed 
during approximately the past 70 m.y. as the Pacific lithospheric 
plate moved first north and then west relative to a melting anom
aly called the Hawaiian hot spot, located in the asthenosphere. 
According to this hot-spot hypothesis, a trail of volcanoes was 
formed and left on the ocean floor as each volcano was progres
sively cut off from its source of lava and a new volcano formed 
behind it. 

Wilson (1963a, c) was the first to propose that the Hawaiian 
Islands and other parallel volcanic chains in the Pacific were 
formed by movement of the sea floor over sources of lava in the 
asthenosphere. Although the Emperor chain was recognized as a 
northward continuation of the Hawaiian chain by Bezrukov and 
Udintsev ( 1955) shortly after the Emperor Seamounts were first 
described by Tayama (1952) and Dietz (1954), Wilson confined 
his hypothesis to the volcanoes of the Hawaiian Islands and the 
Hawaiian Ridge. Christofferson ( 1968), who also coined the term 
"hot spot," extended Wilson's idea to include the Emperor Sea
mounts and suggested that the Hawaiian-Emperor bend repre
sents a major change in the direction of sea-floor spreading, from 

northward to westward. Morgan ( l972a, b) proposed that the 
Hawaiian and other hot spots are thermal plumes of material 
rising from the deep mantle and that the worldwide system of hot 
spots constitutes a reference frame that is fixed relative to Earth's 
spin axis. 

Although experimental testing of the various hypotheses 
proposed to explain hot spots has so far proven unproductive, the 
hot-spot hypothesis has several important corollaries that can and 
have been tested to varying degrees. Foremost among these is that 
the volcanoes should become progressively older to the west and 
north as a function of distance from the hot spot. This progressive 
aging should be measurable with radiometric methods and should 
also be evident in the degree of erosion, subsidence, and geologi
cal evolution of the volcanoes along the chain. A second impor
tant corollary is that the latitude of formation of the volcanoes, as 
recorded in the magnetization of their lava flows, should reflect 
the present latitude of the hot spot rather than the present latitude 
of the volcanoes. Third, because the active mechanism is beneath 
the lithosphere, the Hawaiian-Emperor chain should not be re
lated to the structure of the sea floor. Finally, the volcanic rocks 
of the volcanoes should be similar in both chemistry and se
quence of eruption along the chain or should change in a system
atic and coherent way. 

In this section we describe the Hawaiian-Emperor volcanic 
chain. We review the evidence that indicates that all of the corol
laries mentioned above are true and that the hot-spot hypothesis 
is therefore a viable explanation of the origin of the chain. We 
will also describe the various hypotheses that have been proposed 
to explain the hot-spot mechanism and discuss their strengths and 
weaknesses. This section is a condensed version of a paper by 
Clague and Dalrymple ( 1987) that includes ( 1) a more detailed 
description of the petrology and ages of the individual sampled 
volcanoes that compose the chain, and (2) a section on petrology 
of Hawaiian lava. 

STRUCTURE AND AGE OF THE UNDERLYING 
CRUST 

The volcanoes of the Hawaiian-Emperor chain were formed 
by eruption of lava onto the floor of the Pacific Ocean without 
regard for the age or preexisting structure of the ocean crust or for 
the presence of preexisting volcanoes. The precise age of the 
ocean crust beneath much of the chain is poorly known because 
of the paucity of magnetic anomalies in the area (Fig. 2). The 
Hawaiian Islands and Ridge east of about Midway Island lie on 
crust older than anomaly 34 but younger than anomaly MO. In a 
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HYDROTHERMAL SYSTEMS IN HAW All 

Donald M. Thomas, Hawaii Institute of Geophysics, University of Hawaii, Honolulu, Hawaii 96822 

INTRODUCI'ION 

One consequence of the volcanism that formed the islands 
of the Hawaiian archipelago is the evolution of hydrothermal 
activity. Surface manifestations of active hydrothermal systems 
are evident on the young, eruptively active volcanoes on the 
island of Hawaii; even on the older, long dormant volcanoes of 
Maui and Oahu, geophysical and geochemical evidence has been 
found for lower temperature hydrothermal systems. The physical 
and chemical characteristics of these systems span a broad range 
and depend heavily upon the geologic and hydrologic conditions 
of their formation and evolution. 

ELEMENTS OF A HYDROTHERMAL SYSTEM 

The geologic conditions necessary for the formation of a 
hydrothermal system include a persistent source of heat and suffi
cient ftuid recharge, and rock permeability, to allow the forma
tion of a steam- or water-dominated convection system. Thus, 
because effusive lavas cool almost immediately after eruption, 
hydrothermal systems form only in proximity to long-lived heat 
sources such as shallow magma chambers and dike complexes 
within the rift systems that radiate out from these magma 
chambers. During periods of intense volcanic activity, a hydro
thermal system will be driven by heat provided by the inftux of 
fresh magma from deep within the earth. As this recharge de
clines, hydrothermal activity begins to draw on the heat stored in 
the crystallizing intrusive complexes present in the summit and 
rift systems. 

The physical and chemical characteristics of the hydrother
mal systems associated with the intrusive complexes will depend 
on the chemical characteristics of the heat source and reservoir 
rock and will be strongly inftuenced by the volume and chemical 
composition of the ftuid recharge to the hydrothermal system. 
Thus a magma chamber dike complex that receives little meteoric 
recharge is likely to have a high-temperature vapor-dominated 
hydrothermal system with a fluid chemistry controlled by the acid 
gases discharged from recently ascended magma, whereas a sys
tem on the terminal submarine ridge of an active rift system will 
have a chemistry controlled by seawater-basalt reactions. 

The fluid recharge to a hydrothermal system will be gov
erned by the porosity and permeability of the intrusives in a hot 
dike complex as well as that of the surrounding country rock. At 
shallow depths, fluid permeabilities in extrusive lavas will be 
extremely high, on the order of several thousands of millidarcies, 
but at increasing depths, fracture permeability will be a major 
factor in the reservoir circulation patterns; as temperatures in
crease, plastic deformation of the rocks will not permit fractures 

to persist and thus inhibit fluid penetration. The chemistry of the 
circulating fluids also exerts a strong influence over reservoir 
permeability: meteoric recharge is largely dependent upon soluble 
elements in the rock matrix to provide it with reactive species, 
whereas seawater intruding into a high-temperature hydrother
mal system is extremely reactive, resulting in rapid alteration of 
the reservoir rocks and deposition of secondary minerals (Mottl, 
1983; Seyfried and Bischoff, 1981; Seyfried and Mottl, 1982; 
Thomas, 1987). 

The interplay of geologic and geochemical phenomena that 
control hydrothermal activity in Hawaii is best demonstrated by 
the hydrothermal systems present on Kilauea volcano, where 
detailed surface investigations and deep drilling have provided a 
broad array of data with which to develop models of the active 
hydrothermal systems present there. Other volcanic systems in 
the Hawaiian chain have been much less intensively investigated; 
however, the data that are available do provide insight into their 
current conditions as well as the aging processes of island-based 
hydrothermal systems. 

KILAUEA VOLCANO 

The shallow magma reservoir at Kilauea lies at a depth of 
approximately 3 to 6 km beneath the summit caldera. Magma is 
recharged to this reservoir at a rate estimated to be approximately 
9 ± 3 x to6 m3fmo (Dzurisin and others, 1984), where it may 
reside for a period of weeks to years before it is discharged as a 
summit eruption or as an intrusion into the east or southwest rift 
zone. Conductive and convective heat loss from the summit res
ervoir drives an extensive hydrothermal system within the 
confines of the summit caldera. This system is evidenced by nu
merous persistent fumaroles and solfataras on the caldera floor 
and at its boundary faults (Macdonald and others, 1983). The 
extremely permeable nature of the surface basalts has not per
mitted the formation of hot springs or surface geysers such as 
those associated with other caldera systems. The temperature of 
the discharges from these summit features is typically 96°C or 
lower, but, in areas of intense outgassing, temperatures of 150°C 
have been measured (Casadevall and Hazlett. 1983). 

The subsurface temperature regime within this hydrother
mal system is not presently well defined. Measurements made in 
the only deep research well drilled in the caldera (Keller, 1974; 
Zablocki and others, 1974) showed nearly isothermal condi
tions, at 20°C to 30°C, to a depth of 488 m, where a steep 
increase occurred, to a tempetature of more than 80°C, when a 
perched water body was encountered. Below the perched aquifer, 
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at about 700 m, the temperature declined for an interval of about 
300 m and then began to rise sharply to a maximum temperature 
of l37°C at a bottom hole depth of 1,250 m. This temperature 
profile is probably not representative of the entire caldera, but it 
does suggest that convective processes, through isolated surface 
vapor discharges and deeper groundwater circulation, are more 
important than conductive processes in the loss of heat from the 
summit region. 

The typically low temperature of the surface discharges sug
gests that meteoric recharge buffers the temperature of the shal
low hydrothermal system. The buffering action is a function of 
both the high rate of rainfall at the summit (200 cm/yr; Arm
strong, 1973) as well as the high permeability offractured subaer
ial basalts in the caldera region (up to 104 millidarcies; Keller, 
197 4 ). Because the surface basalts cannot sustain a significant 
pressure differential, the temperature of the fumarolic discharges 
can exceed the local boiling point only when the magmatic, 
gas-driven heat flow exceeds that consumed by down-flowing 
meteoric recharge. Hence, only the most gas-rich discharges ex
ceed 96°C, and even these show temperature variations in re
sponse to periods of exceptionally heavy rainfall (Casadevall and 
Hazlett, 1983). 

Because the fluid recharge to the summit hydrothermal sys
tem is predominantly meteoric water, the chemistry of the hy
drothermal system is strongly influenced by volatiles discharged 
from the magma chamber. The fumarolic discharges contain sub
stantial concentrations of carbon dioxide and sulfur dioxide and 
lesser amounts of hydrochloric, hydrofluoric, and sulfuric acids, 
and in some of the lower temperature fumaroles, hydrogen sulfide 
(Naughton and others, 1963; Greenland and others, 1985). Mass 
discharge rates of carbon dioxide and sulfur dioxide from the 
summit chamber have been estimated using the magma recharge 
rate of Dzurisin and others ( 1984) and volatile partitioning data 
(Gerlach and Graeber, 1985), to be approximately 3.7 x 109 
g/day and 7.2 x 108 g/day respectively; discharge of carbon 
dioxide and sulfur dioxide from the thermal features on the cal
dera floor have been measured at 1.6 x 109 g/day (Greenland 
and others, 1985) and 1.5 to 3.0 x J08 g/day (Casadevall and 
Hazlett, 1983; Greenland and others, 1985) respectively. The gas 
discharge rates estimated from the magma recharge rate are in 
remarkably good agreement with the measured values for carbon 
dioxide. The apparent discrepancy in the measured and predicted 
sulfur emission rates suggests that loss of the more reactive sulfur 
species from the fumarolic discharges is quite extensive. Candi
date mechanisms for removal of sulfur gases include dispropor
tionation, air-oxidation, or auto-oxidation (Claus reaction) of 
sulfur dioxide and hydrogen sulfide (Mizutani and Sugiura, 1966; 
Giggenbach, 1980). 

The inferred depth of Kilauea's summit magma chamber 
places the top of the intrusive complex at least 1 km below sea 
level. Thus the shallow, vapor-dominated hydrothermal system 
seen at the summit is probably underlain by a liquid-dominated 
zone at or near the boiling point. The sulfur dioxide dispropor
tionation reaction noted above and the inferred mass emissions of 

hydrochloric and hydrofluoric acids from the magma chamber 
(Gerlach and Graeber, 1985) suggest that this zone will be 
strongly acid and contain moderate to high concentrations of 
acid-leached salts from the basalt matrix. 

The hydrothermal system associated with the Kilauea 
summit caldera can be inferred to be a gas-rich, steam-dominated 
system at shallow levels; and at depth, a highly acid, liquid
dominated system driven by volatile discharge and conductive 
heat loss from the roof of the summit magma chamber (Fig. 52). 

KILAUEA EAST RIFf ZONE 

Geologic mapping of older, eroded rift systems (Macdonald 
and others, 1983; Ryan and others, 1983) indicates that the shal
low ( <3 km depth) intrusive complex associated with the Kilauea 
east rift zone (ERZ) consists of near-vertical, tabular bodies rang
ing in thickness from a few centimeters to several meters, in
terspersed with screens of extruded lavas. The core of the rift 
zone, where intrusives make up the bulk of the rock mass, is 
believed to consist of a nearly continuous zone of plastic, near
molten rock (Hardee, 1982; Dzurisin and others, 1984; Swanson 
and others, 1976b ). Magma recharge into the ERZ has been 
estimated by Dzurisin and others ( 1984) to be approximately 5 x 
106 m3 /mo, resulting in a heat influx of about 2,800 megawatts 
of thermal energy (Thomas, 1987). The width of the dike com
plex is not well known; aeromagnetic data (Godson and others, 
1981) and the distribution of surface vents and ground cracks 
(Holcomb, 1980) suggest a width of 2 to 4 km, whereas interpre
tation of gravity and ground-based magnetic data suggest that the 
width of the earlier, now buried, rift zone may extend to lO to 25 
km at depth (Furumoto, 1978). 

The ERZ dike complex has a profound influence on the 
shallow groundwater hydrology of the eastern flank of Kilauea; 
every groundwater well drilled within the surface expression of 
the rift zone (Fig. 53) produces brackish water having tempera
tures ranging from 35°C to near boiling (Thomas, 1987); wells 
south and downgradient of the rift show geochemical and some
times thermal evidence of being influenced by hydrothermal out
flow from the rift. Geophysical surveys along virtually the entire 
length of the rift zone (Keller and others, 1977; Kauahikaua and 
Mattice, 1981) show low-resistivity anomalies that are attributed 
to outflow of thermally altered or saline groundwater and indi
cate that an active hydrothermal system is associated with the 
entire length of the ERZ. 

THE HYDROTHERMAL SYSTEM 

Our understanding of conditions within the hydrothermal 
system on the ERZ has been greatly assisted by eight deep geo
thermal exploration and research wells that have been drilled into 
the rift during the last decade. These wells have all been drilled 
into the lower rift area (Fig. 53) and have penetrated to depths 
ranging from 1,920 to 2,557 m. Although complete geology and 
engineering data sets are not available from the privately funded 
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Figure 52. Conceptual model of hydrothermal system associated with the Kilauea summit caldera and 
magma chamber. 

exploration wells, we do have sufficient data to draw a general
ized model of the active hydrothermal system associated with the 
ERZ. 

The deep wells (Fig. 54) encountered an interval of warm 
(30°C to l00°C), nearly isothermal conditions where large vol
umes of meteoric recharge (2.5 x 106 m3fyr/km2; Thomas, 
1987) mix with deep hydrothermal fluids discharged from depth. 
In most wells this mixing interval extended to depths of nearly 
I ,000 m, where temperature gradients began to steepen. The rate 
of temperature increase varied widely from well to well, however. 
Wells that encountered productive aquifers showed a steep 
temperature gradient overlying a nearly isothermal region where 
permeabilities were high enough to allow hydrothermal circula
tion and mixing, whereas those that encountered low permeabil
ity formations showed a conductive temperature gradient to total 
depth. Bottom-hole temperatures of six of the deep wells ex
ceeded 300°C, and the highest temperature encountered ex
ceeded 370°C. Two wells drilled on the southern edge of the 
surface manifestation of the rift wne showed temperature rever
sals at depth (e.g., 2883-04A, Fig. 54) that were interpreted to 
indicate that the wells had passed through a wne of hydrothermal 
outflow and had entered cold country rock below. It is believed 

that the latter wells mark the southern extent of active hydro
thermal circulation on the lower ERZ. 

Subsurface permeabilities encountered during drilling varied 
substantially with depth. At shallow depths, extremely high per
meabilities were found where interflow a'a rubble or clinker lay
ers and lava tubes permit virtually unhindered fluid flow. At 
deeper levels, where dikes are interspersed with dense pillow 
lavas, the predominant flow channels consist of tectonically and 
volcanically induced fractures. The only well for which deep 
permeability data are available is the HGP-A well (2883-01, Fig. 
54) that was found to have a reservoir permeability thickness of 
approximately 1 ,000 millidarcy feet over the lower 1 ,300 m of 
hole and was able to sustain a production rate of about 50 
tonnes/hr of a mixed fluid consisting of steam and liquid water. 
Engineering data suggest that the majority of this production was 
derived from two or three discreet intervals in the well; hence, the 
conclusion that fluid flow is fracture controlled. Production rate 
data from the other high-temperature wells on the rift (lovanitti 
and 0'01ier, 1985; Thomas, 1987) indicate similar or slightly 
lower permeabilities toward the interior of the rift, and much 
lower ones on the southern boundary of the rift. It is of note that 
the characteristics of the fluids produced from these wells has 
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Figure 53. Map of Kilauea east rift zone showing groundwater wells and 
deep geothermal exploration wells. The numbers adjacent to each well 
represent the U.S. Geological Survey well designation. 

varied widely: some (such as HGP-A) have produced mixed 
fluids of steam and water, whereas others have generated dry 
steam only (lovanitti and D'Olier, 1985). Down-hole tempera
ture and pressure data indicate that the unperturbed reservoir 
consists of a single phase (liquid), and that the occurrence of dry 
steam in some wells is the result of the low permeability found in 
the rift zone (Thomas, 1987). 

DOWNHOLE MORPHOLOGY AND PETROLOGY 

The morphology of the cuttings and cores from the wells in 
the rift indicates that porous, highly fractured rocks are present 
throughout the first 300-m section. A transition zone is then 
encountered in some wells, consisting of oxidized hyaloclastites, 
below which lie pillow basalts interspersed with intrusive bodies 
(Thomas, 1987). In general, the density of the pillow basalts 
increases, and the porosity and permeability decrease with depth 
of emplacement, reflecting the greater hydrostatic pressures under 
which they were intruded or extruded (Stone, 1977). 

Little alteration beyond normal weathering processes was 
found in the porous subaerial basalts, but as the depth and 
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Figure 54. Plot of available temperature gradient data for deep geother
mal wells in the east rift zone. Plots are synthesized from several data sets 
to provide the current best estimate of subsurface temperatures in the rift. 
Two plots are shown for the HGP-A well showing the temperature 
profile when fluid circulation is occurring <•> and when circulation is 
impeded ('Y ). 

temperature increased, intermittent hydrothermal alteration of 
the reservoir rocks was apparent. The grade of metamorphism 
was found to generally increase with depth, but in every case, 
intermittent alteration was found in bands of variable thickness 
interspersed with bands of virtually unaltered pristine basalt. The 
alteration assemblage included zeolites, montmorillonite, illite, 
pyrite, and hematite at shallower levels, and calcite, pyrite, anhy
drite, chlorite, epidote, and quartz at depth. The similarity of this 
assemblage to those found in studies of other seawater-dominated 
hydrothermal systems (e.g., Reykjanes, Iceland [Kristmannsdot
tir, 1975, 1983]; the Mid-Atlantic ridge [Humphris and Thomp
son, 1978]; and laboratory studies of seawater-basalt reactions 
[Mottl, 1983]) clearly indicates that seawater circulation through 
this system has had a substantial influence on the hydrothermal 
alteration found. The discontinuity of the alteration further sug
gests that seawater entry into the system is not pervasive but 
probably occurs through fractures generated by volcanic or tec
tonic activity within the rift. The intense seawater alteration 
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found in some of the wells, although indicative of earlier seawater 
circulation, does not necessarily correspond to current permeabil
ity conditions found in the wells. In spite of pervasive alteration, 
some wells showed extremely low permeabilities, suggesting that 
an important aspect of seawater hydrothermal alteration of the 
basaltic reservoir rocks is the eventual elimination of the fracture 
permeability by deposition of secondary minerals. 

RESERVOIR FLUID CHEMISTRY 

The most extensive data base available for the chemistry of 
the deep reservoir fluids on the ERZ comes from the HGP-A 
well, which has undergone testing for more than a decade. Prelim
inary testing of HGP-A showed that the reservoir fluids con
tained much lower concentrations of dissolved solids than were 
anticipated on the basis of accepted models of island hydrology 
(Macdonald and others, 1983; Thomas, 1980). Whereas the lat
ter model predicted a transition from fresh to saline water at 
depths of less than 400 m, the presence of fresh water at nearly 
2,000 m suggests that hydrothermal circulation has permitted 
cold, fresh water to displace hotter, less dense saline water at 
depth (Thomas, 1987). The dike complex apparently limits the 
infiltration of saline fluids by inhibiting seawater intrusion across 
the rift from the south because of the low permeability of the dike 
rocks, but the complex permits rapid vertical and east-west 
movement of fresh water through fractures paralleling the strike 
of the rift. It is believed that the permeability contrast between 
fresh and saline water entry is further enhanced by the deposition 
of secondary minerals from the entering seawater (Thomas, 
1987). Thus, access of seawater to the rift zone is controlled by 
thermally driven convection, the rift zone structure, and chemical 
alteration associated with high-temperature seawater-basalt reac
tions. In spite of the limitations imposed by the dike complex on 
circulation, the residence time of fluids in the rift is indicated by 
14C activities to be less than about 12,000 years (Thomas, 1980). 

Withdrawal of fluids from the HGP-A well for a continuous 
period of five years resulted in a 500 percent increase in the 
salinity of the fluids produced. The major element composition of 
the increasingly saline fluids shows strong similarities to that 
found at the Reykjanes geothermal system in Iceland (Ragnars
dottir and others, 1984) and in fluids produced by sea-floor hy
drothermal vents (Mottl, 1983) and hence is clearly of seawater 
origin. However, the relative cation concentrations in the fluids 
have shown that the intruding fluids have been heavily altered by 
seawater-basalt reactions; magnesium has been nearly quantita
tively removed from the seawater, whereas lithium, potassium, 
and calcium have been enriched by as much as 2,000 percent 
(Thomas, 1987). Changes in the relative cation concentration 
with time also indicate that the degree of alteration is sensitive to 
the increasing effective seawater:rock ratio in the reservoir. The 
apparent fluid equilibration temperatures calculated on the basis 
of the cation concentrations (Fournier, 1981) have also shown a 
decrease from approximately 300°C to a temperature of about 
250°C. Whether this apparent change reflects a real trend in the 

reservoir temperature or is simply an artifact of the seawater:rock 
reactions remains in doubt at present (Thomas, 1987). The 
change in cation chemistry of the fluids was also accompanied by 
a decline in pH from about 7.4 to about 6.8. This decline is 
consistent with laboratory results that have shown that, at increas
ing seawater:rock ratios, the loss of magnesium ion as Mg(OHh 
from seawater results in an increase in hydrogen ion concentra
tion that cannot be buffered by the exchange of other cations
such as calcium-from the reservoir rock; under conditions where 
seawater greatly exceeded the reactive reservoir basalt available, 
the pH fell to values as low as 2. Continued production of saline 
fluids from the HGP-A well may demonstrate whether such con
ditions occur in a natural hydrothermal system. 

The evolution of the fluid chemistry provides insight into the 
changes that occur as seawater circulation begins in a newly 
formed fracture system, as well as into the differences between the 
conditions that might be anticipated in the seawater-and 
meteoric-water dominated portions of the ERZ. The data sug
gest that hydrothermal alteration is extremely rapid initially; 
magnesium in seawater is exchanged for lithium, potassium, and 
calcium in the fracture wallrock until the latter alkalis are de
pleted; when this reaction becomes more sluggish the hydrogen 
ion concentration of the fluids begins to rise, thus generating more 
aggressive acid, saline hydrothermal fluids. The occurrence of 
intensely altered, high-temperature, low-permeability aquifers, as 
well as low-temperature, highly permeable aquifers on the south
em flank of the rift, suggests that the ultimate fate of the seawater
dominated system may depend on the extent of the fracture 
system, as well as its proximity to a heat source. The character of 
a hydrothermal system dominated by seawater, such as would be 
found on the southern flank of the ERZ, is indicated to have a 
highly aggressive fluid chemistry and to rapidly evolve as sea
water circulation occurs. This contrasts sharply with the more 
benign, and possibly more stable, hydrothermal system on the 
interior of the rift that is recharged predominantly by meteoric 
water. 

The composition of the gases dissolved in the hydrothermal 
fluids on the lower rift zone is distinctly different from those 
produced by the fumaroles at Kilauea's summit. The most impor
tant differences found are that the predominant sulfur species on 
the lower rift is hydrogen sulfide, as opposed to sulfur dioxide at 
the summit, and that the carbon to sulfur ratios of the geothermal 
gases are nearly an order of magnitude lower for the ERZ than 
are found at the summit. Although the former difference is easily 
explainable on the basis of thermodynamic equilibria of sulfur 
species (Gerlach and Nordlie, 1975; Helgeson and others, 1981 ), 
the latter is not as well understood. Two mechanisms may con
tribute to the carbon-to-sulfur ratio observed in the HGP-A 
fluids: (I) enrichment of sulfide due to reduction of incoming 
seawater sulfate by the reservoir rock (McDuff and Edmond, 
1982); or (2) the preferential loss of C02 from magmas at the 
summit chamber that are subsequently intruded into the rift zone. 
Whereas the available iron in the reservoir rocks may limit the 
sulfide contribution from seawater, recent studies by Gerlach and 
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Graeber ( 1985) and Greenland and others ( 1985) suggest that 
magma loses a substantial portion of its C02 as it ascends to, and 
resides in, Kilauea's summit reservoir. Hence, the low carbon-to
sulfur ratio found on the ERZ probably reflects the elemental 
ratios in the reservoir basalts. 

The overall picture of the hydrothermal system associated 
with the ERZ can be inferred to have the general characteristics 
described in the next two paragraphs. 

l. The shallow subsurface environment, owing to the ex
tremely high permeability and moderate to high rainfall, will 
have low temperatures except in areas of active discharge of 
deeper hydrothermal fluids; even in these areas, temperatures are 
unlikely to exceed the boiling point of water at the combined 
atmospheric and hydrostatic pressures at a given depth. Active 
hydrothermal circulation within the shallow, permeable aquifers 
is likely to maintain nearly uniform, or only slowly increasing, 
temperatures to depths of 500 m or more, where permeabilities 
begin to decline. The temperature within the deeper portion of 
the rift zone increases substantially, and although the highest 
recorded reservoir temperature to date in the rift is slightly more 
than 368°C (M. Gardener, personal communication, 1986), geo
physical data of Godson and others ( 1981) and Flanigan and 
Long ( 1987) suggest that temperatures in excess of the Curie 
temperature of basalt are present at depth. The temperature pro
file across the rift zone is somewhat more problematic; at the 
southern boundary of the rift, temperatures drop off drastically 
and show steep gradients in the horizontal and vertical dimen
sions (Fig. 55). Temperatures on the northern boundary of the rift 
are not as well characterized but are expected to show a more 
gradual decline across the older, now buried, northern extent of 
the rift zone's dike complex. 

Figure 55. Conceptual model of rift zone hydrothermal system in cross 
section normal to the strike of the rift. 

2. The fluid chemistry data suggest that both meteoric and 
seawater recharge play significant roles in the chemistry of the 
east rift hydrothermal system. The dike complex exerts a struc
tural control over permeability that allows meteoric recharge to 
displace seawater from the interior of the rift zone. However, on 
the southern boundary, seawater intrusion into the rift may occur 
along fracture-induced permeability. The hydrothermal chemistry 
in the seawater-dominated portion of the rift is expected to have a 
high dissolved solids concentration and, at high seawater:rock 
ratios, a low pH. Auids from the freshwater system have a nearly 
neutral pH and low dissolved solids concentrations. The aggres
sive nature of the saline fluids may allow rapid alteration of the 
native reservoir rock and deposition of alteration minerals, result
ing in a loss of the fracture-induced permeability in the reservoir. 
The freshwater-dominated portion of the hydrothermal system 
may be able to sustain an active high-temperature hydrothermal 
circulation system, whereas the latter may be able to maintain 
circulation only at lower temperatures where alteration processes 
may occur more slowly, allowing fracture-induced permeability 
to persist for a longer period of time. 

OTHER HYDROTHERMAL SYSTEMS IN HA WAil 

The extent of the data available for hydrothermal activity 
associated with other volcanic systems in Hawaii is far more 
limited than that for Kilauea. Recent geothermal exploration 
studies (Thomas and others, 1979; Thomas, 1985) have found 
strong evidence for such activity on the older, more dormant, 
volcanic systems in the Hawaiian chain; the data upon which 
these hydrothermal systems have been inferred are presented in 
Table 11. 

The characteristics of these systems are, in many respects, 
similar to those of Kilauea; however, some important differences 
exist. One of the more interesting of these differences is found in 
the hydrothermal system associated with Mauna Loa's summit 
magma chamber, both of which are entirely above sea level and 
receive only limited meteoric recharge. As a result, the tempera
tures of the fluids within this system are not significantly buffered 
by boiling processes, and hence the temperature of the surface 
discharges in several locations are in excess of 350°C; this system 
is believed to be a low-pressure vapor-dominated system. 
Another important aspect of Mauna Loa's hydrothermal activity 
is its limited extent: despite the high-temperature summit dis
charges, there is very little surface evidence of hydrothermal activ
ity associated with the lower elevations of either rift zone. The 
lack of such evidence may be the result of high rates of meteoric 
recharge masking deep hydrothermal discharges; however, the 
short fluid residence times and high rates of heat loss calculated 
for the Kilauea ERZ (Thomas, 1987) suggest that the rift zone 
hydrothermal systems may be ephemeral features persisting only 
as long as frequent intrusive activity occurs on the rift zone. 

Hydrothermal discharges from the caldera complexes of the 
older, now dormant, volcanic systems on Maui and Oahu islands 
have been tentatively identified on the basis of thermal and geo-

• 



• 

Geologic 
Structure 

Kilauea 
Southwest Rift 

Mauna Loa 
Summit 
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Hualalai 
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Rift System 

West Maui 
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Caldera 
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TABLE 11. OTHER HYDROTHERMAL SYSTEMS IN HAWAII 

Date/Age of Most 
Recent Activity 

Eruption: 1974 
Intrusion: 1981-1982 

Eruption: 1975, 1984 
Intrusions: 1980-1984 

Eruption: 1975, 1984 
Intrusion: 1975 

Eruption: 1801 
Intrusion: 1929 

Eruption: -so ka 

Eruption: 1790; 
several other isolated 
vents est. at <1,000 
yrold 

Eruption: 20 ka; 
Shield building 
terminated at 1.2 Ma 

Shield building 
terminated at 2.4 Ma 

Data Upon Which a Hydrothermal System Is Inferred 
and Probable Inferred Characteristics of System 

Recent magmatic intrusions; steaming ground and fumaroles; resistivity 
anomalies. High temperature, possibly seawater-dominated system. More 
limited in extent than ERZ. 

High temperature fumarolic discharge; aeromagnetic anomaly. High temp
erature, vapor dominated; driven by convective/conductive heat and gas 
loss from magma chamber. 

Intermediate temperature fumarole discharges at upper elevations (>2,700 
m); aeromagnetic and self-potential anomalies on upper rift. Limited high 
temperature vapor-dominated system on high-elevation portion of rift; 
intermediate temperature, "blind" system on lower flanks is possible. 

Hydrothermal alteration at summit; self-potential and resistivity 
anomalies at summit and on upper west rift system; intense aeromagnetic 
anomaly at summit. Low to moderate temperature, low pressure water
dominated system driven by summit magma chamber relict heat. 

Ground-water temperature (33"C) and chemistry anomalies; soil chemistry, 
and resistivity anomalies. Low-temperature, limited discharge associated 
with relict heat from post-erosional intrusive event. 

Resistivity and soil geochemical anomalies. Low to intermediate 
temperature system; possibly seawater-dominated at depth. 

Warm (33"C) ground-water wells; ground-water chemistry and resistivity 
anomalies. Low to moderate temperature system; driven by relict heat 
from West Maui caldera complex or from late-stage intrusive activity in 
southern flank; possibly seawater dominated at depth. 

Ground-water temperature (27"C) and chemistry anomalies and resistivity 
anomalies. Low-temperature hydrothermal system driven by relict heat from 
Waianae caldera complex; probably seawater dominated at depth. 
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chemical anomalies found in shallow ground-water supplies. 
These discharges are typified by chemical alterations that are 
distinctly different from those found in the high-temperature sys
tems on Kilauea. Whereas magnesium and sulfate are typically 
depleted in the young active systems, low-temperature discharges 
show substantial enrichments of these species and much stronger 
enrichments of calcium than are found in the young systems (Cox 
and others, 1979; Kennedy, 1985). These chemical differences 
suggest that, as temperatures decline in an aging hydrothermal 

system, the mineral assemblages formed in its more active phase 
(e.g., chlorite, smectite, and anhydrite) are "weathered" to low
temperature clays, allowing the remobilization of a significant 
fraction of the major and trace elements sequestered during high
temperature hydrothermal activity. Thus the life cycle of a Ha
waiian hydrothermal system consists of a period of formation of 
high-grade metamorphic mineral assemblages followed by even
tual decay of these species to low-temperature clays as the heat 
source driving hydrothermal circulation is exhausted. 
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