Please use this identifier to cite or link to this item:

Hawaii Deep Water Cable Program, phase II-B, task 3 : cable materials corrosion and abrasion testing

Item Summary

Title:Hawaii Deep Water Cable Program, phase II-B, task 3 : cable materials corrosion and abrasion testing
Authors:Larsen-Basse, Jorn
Keywords:Hawaii Deep Water Cable Program
LC Subject Headings:Electric cables--Corrosion
Cables, Submarine--Hawaii--Corrosion
Electric lines--Hawaii--Underground
Electric power transmission--Hawaii
Underground electric lines--Hawaii
Date Issued:Oct 1986
Publisher:Hawaii Natural Energy Labratory
Citation:Larsen-Basse J. 1986. Hawaii Deep Water Cable Program, phase II-B, task 3: cable materials corrosion and abrasion testing. (HI): Hawaii Natural Energy Labratory.
Series:Hawaii Deep Water Cable Program Phase II
Abstract:This report presents data on the resistance of some typical power cable materials and common reference materials to deterioration in the marine environment as it exists in the general region of the proposed route of the Hawaii Deep water Cable (HDWC). The work was divided into four tasks: (1) long-term corrosion tests in Hawaiian surface and deep ocean seawater, (2) crevice corrosion testing of stainless steels in these waters, (3) abrasion testing against slurries of Hawaiian marine rock fragments, and (4) corrosion-fatigue testing of lead in seawater and other environments.
The work was performed in the Marine Materials Laboratory on the campus of the University of Hawaii in Honolulu and at the Natural Energy Laboratory of Hawaii (NELH) on the island of Hawaii. All corrosion tests and all other tests in flowing seawater were conducted at NELH where two seawater systems are available side by side. One system pumps clean off-shore surface seawater to the laboratory. The water temperature ranges between 25 and 28°C over the year and the water is typical of open ocean tropical seawater. The other system brings in seawater from a depth of about 600 m (2,000 feet). This water has a temperature of 7-10°C and has lower pH and oxygen content than the warm water. It is typical of OTEC-type condenser cooling water.
Pages/Duration:194 pages
Appears in Collections: Department of Business, Economic Development and Tourism
The Geothermal Collection

Please email if you need this content in ADA-compliant format.

Items in eVols are protected by copyright, with all rights reserved, unless otherwise indicated.