Characterization of Nitrifying Bacterial Community in a Mariculture Wastewater Treatment Using SBR System

Date

2015

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

Sequencing batch reactors (SBR) have been used in the biological treatment of aquaculture wastewater. In this study, we investigated the microbial community of a SBR that used diatomite earth (20 g/L) as the sludge carrier material. Marine wastewater in which ammonia content was 42.08 to 55.88 mg/L was supplied to the SBR every 12 h over a treatment period of 65 days. During the first 20 days, the concentration of NH4-N decreased gradually, while nitrite (NO2-N) became the major nitrogen compound, reminiscent of the development of an ammonia-oxidizing process. Over the next 20 days, the concentration of NH4-N decreased further due to conversion to NO3-N. More than 99% of the NH4-N was converted to NO3-N over a period of 40-65 days. Denaturing gradient gel electrophoresis (DGGE) assay showed that bacteria of the genus Flavobacterium were present during the entire treatment period, while α-Proteobacteria, β-Proteobacteria, γ-Proteobacteria, and Sphingobacteriia started to accumulate after the first 20 days. Fluorescence in situ hybridization (FISH) assay identified Nitrobacter and Nitrosomonas as the main bacteria involved in the conversion of NH4-N to NO3-N. Diatomite earth therefore acted as an efficient sludge carrier by shortening the settling time and facilitating bacterial colonization. This SBR was capable of rapid removal of NH4-N. This warrants further investigation at the pilot-scale in an actual mariculture farm.

Description

Keywords

mariculture wastewater, diatomite, DGGE, nitrifying bacteria, Fish culture--Israel., Fish culture.

Citation

Extent

9 pages

Format

Geographic Location

Time Period

Related To

The Israeli Journal of Aquaculture - Bamidgeh

Related To (URI)

Table of Contents

Rights

Rights Holder

Local Contexts

Collections

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.