CLASSIFIERS AND DEFINITENESS IN LONGDU (MIN CHINESE)

Joanna Ut-Seong Sio
Palacký University Olomouc
joannautseong.sio@upol.cz

Abstract
This study examines a pair of classifiers in Longdu which show overt definiteness marking. In Longdu, the classifier pair 뇌’
and a⁵⁵ gives rise to an indefinite and a definite interpretation respectively. This pair of classifiers is compatible with nouns that denote discrete entities (e.g., apples) or homogeneous substances (e.g., water). The resulting [clf - N] phrase expresses an accumulation of entities or substances with an underspecified number or amount. I call them ‘fuzzy’ classifiers, referring to the lack of precise quantity specification. The explicit definiteness marking in this pair of ‘fuzzy’ classifiers provides a valuable glimpse into the definiteness of classifiers when embedded in different kinds of nominal phrases. I present data showing that the indefinite and definite fuzzy classifiers in Longdu have different properties with respect to the licensing of NP-ellipsis, reduplication, and modification. Only the indefinite fuzzy classifier can license NP-ellipsis and reduplicate, while only the definite fuzzy classifier can appear in a [bare modifier - clf - N] phrase. I will present evidence which suggests that the presence of two kinds of classifiers with definiteness contrast can be a phenomenon that spans over other Chinese varieties. All Longdu data presented here were gathered in my own fieldwork.

Keywords: classifiers, definiteness, Min Chinese
ISO 639-3 codes: zld (proposed), yue, cmn

1 Introduction

1.1 Longdu: A Northeastern Min variety
Longdu is a Min Chinese variety spoken in Zhongshan (Zhongshan Min).1 It is spoken in a language enclave in Zhongshan County, Guangdong Province (just over 80 km from Hong Kong), which is a predominately Yue-speaking area. Three varieties of Min are spoken in the Zhongshan area: Longdu, Nanlang and Sanxiang (Gao 2002). All my data are from Longdu, in particular, the Longdu variant that is spoken in Dachong Town.2 Using regular sound correspondences, Bodman (1982) classifies both Longdu and Nanlang as Northeastern Min, a branch with which Fuzhou is the prestige variety. The Sanxiang dialect differs from the other two and belongs to the Southern Min branch (Bodman 1982).

(1) Chinese > Min > Northeastern Min > Longdu

1 There are seven fāngyán 方言 (lit. regional speech) groups in Chinese: Mandarin (or Northern Chinese), Xiang, Gan, Wu, Yue, Hakka, and Min (Yuan1960). The term ‘topolects’ was coined by Mair (1991) to refer to speech varieties where the label of either ‘language’ or ‘dialect’ would be controversial. For this article, I will use the term ‘Chinese’ to refer to this family of languages and the term ‘variety’ to refer to different fāngyán as well as its subgroups.

2 The population of Dachong Town is about 75,000 (The China County Statistical Yearbook 2018).
As for how the Min-speaking people from the Fujian area ended up in Guangdong, a Yue-speaking province, Chong (2010) states that much of southward migration from Fujian occurred during the 13th century near the end of the Southern Song Dynasty (1127-1279) and in the early Yuan Dynasty period (1280-1367). However, he also mentions that some emigrant groups headed south from Fujian about three centuries prior to the troubled time of the Mongol invasion (1205-1279), and this population movement continued well into the succeeding Ming period (1368–1643). In addition to the political instability, other factors such as setbacks in local commerce and the maritime trade, banditry, the incessant peasant disturbances as well as the lack of arable land must have also stimulated migration from Fujian to Guangdong (Chong 2010). Regarding the migration of the Longdu people, Egerod (1956:6) wrote:  

'A well-known tradition in Zhongshan has it that the [Longdu] are descendants of [Fujianese] pirates, an opinion which is not shared by the [Longdu] themselves. In Shanming t'ing I met the tradition that the [Longdu] people during the [Song] dynasty travelled over land from Pu Tien via Nam Hung to Zhongshan. They do not consider themselves native to Zhongshan…'  

According to Gao (2002), the settlement of Min speakers in Zhongshan went back to Northern Song Period, Tian Sheng reign (1023-1031). In view of the above, it is likely that Longdu has developed separately from Fujian Min for almost a thousand years.

Zhongshan Min, as of now, is a mixture of different Min varieties brought by immigrants via different waves of migration as well as a result of the prolonged language contact with the surrounding Cantonese, in particular Shiqi (Shekki) Cantonese. Shiqi is an urban district in the center of Zhongshan (Egerod 1956, Gao 2002). As reported in Bodman (1982), many words in Zhongshan Min related to government, education and modern technology were borrowed from Shiqi Cantonese. The linguistic prestige of Mandarin and Cantonese in the Zhongshan area has set Longdu onto an extinction path. A TV documentary from Zhongshan reported that in one primary school in Shaxi (a Longdu-speaking village), not all students can recall the Longdu terms for common words like tsʰiu⁵⁵diɛ¹³ ‘bedroom’ and diɛŋ¹³ʔɑː³¹ ‘kitchen’; Furthermore, 60 percent of the interviewed students think Cantonese sounds more pleasant than Longdu. This signals urgency in the linguistic documentation of Longdu.

All Longdu data used in this study come from my own fieldwork. Longdu data are transcribed using International Phonetic Alphabet (IPA). Longdu has 7 tones (Kratochvil & Sio 2019). Each tone is represented by a pair of numerals indicating the pitch level and contour (1 is the lowest and 5 is the highest). This is shown in the table below:

<table>
<thead>
<tr>
<th>Table 1: Longdu tones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contours</td>
</tr>
<tr>
<td>Descriptions</td>
</tr>
</tbody>
</table>

It should be noted that even though the focus of this study is on Longdu Min, to aid the discussion and to provide a comparative perspective, Cantonese and Mandarin data will also be presented whenever necessary. In terms of romanization scheme, Pinyin will be used for Mandarin; Jyutping will be used for Cantonese.

1.2 Classifiers

Before we discuss the pair of fuzzy classifiers in Longdu, we will first provide a brief background on Chinese classifiers in general (using more well-known Chinese varieties like Mandarin and Cantonese as examples). This brief overview is relevant in that it helps to anchor fuzzy classifiers in the classification of classifiers.

---

3 In Egerod (1956), Longdu is written as Lungtu, Fujianese as Fukienese and Song as Sung.
4 中山故事之趣談隆都話 zhōngshān gùshì zhī qùtán lōngdōu huà: http://www.youtube.com/watch?v=9XaCdz6eLjI, http://www.youtube.com/watch?v=gPkWdoJmUTY
5 The only available grammatical description of Longdu is Egerod (1956). There are two towns in which Longdu is spoken, Dachong and Shaxi. Egerod's (1956) informant was from Shaxi, while mine are from Dachong.
6 My informants either still live in the Zhongshan area or have moved to Hong Kong. All of them still speak Longdu at home.
In numeral classifier languages, which Chinese is one of them, classifiers are obligatory when a noun is used with numerals (Allan 1977). However, in Chinese, classifiers can also be used when numerals are not present. [CLF - N] phrases and [DEM - CLF - N] phrases are also possible, suggesting that the function of classifiers is not simply to link a numeral to a noun. [CLF - N] phrases in some Chinese varieties (e.g., Cantonese) can express definiteness. Classifiers have been claimed to carry functions such as facilitating counting (linking a numeral to a noun), individuating (providing a unit for counting) and definiteness encoding (Cheng & Sybesma 1999, Sio 2006, Sybesma 2007, Li & Bisang 2012).

Chinese classifiers can be roughly divided into two kinds: sortal classifiers and measure words. The former names a unit that is already present in the semantic denotation of a noun, while the latter creates a unit (Croft 1994). In other words, measure words contribute additional meaning to a noun, while sortal classifiers do not (Her & Hsieh 2010). Sortal classifiers are generally used with nouns that are bounded/have atomic units. Measure words are a mixed bunch. They can be compatible with both discrete entities and homogenous substances, or either, depending on the measure word.7

In Chinese, sortal classifiers in general ‘categorize’ objects by picking out some salient perceptual properties (Tai & Wang 1990, del Gobbo 2014). For instance, the Cantonese classifier tiu4 is used with long, thin objects like ropes, straws, rivers, sausages, etc., while the Cantonese classifier bun2 is used with books or bound set of sheets in general. A count noun is often only paired with one unique classifier, though occasionally more than one classifier can be compatible with a count noun if different salient properties are focused on, e.g., in Cantonese (classifiers underlined), jat1 ceet1 hei3 ‘one movie’ vs. jat1 coeng4 hei3 ‘one scheduled showing of a movie’. Measure words might differ with respect to whether they impose restriction on the noun they combine with, e.g., container measure words like the Cantonese tung2 ‘bucket’ is compatible with any entities/substances that can fit into a bucket; collective measure words like kwan4 ‘group’ are only compatible with animate objects.

To maintain the simple dichotomy of sortal classifiers versus measure words, in this article, I consider all non-sortal classifiers to be measure words, while being fully aware that measure words constitute a heterogeneous group. The following is a compiled list of measure words, mainly taken from Cheng (2012) and Cheung (2016). Cantonese examples are used for illustrative purposes:

- Measure words that denote measuring units, such as cek3 ‘foot’ (in length), bong6 ‘pound’ (of weight), etc.
- Measure words that are containers, such as bui1 ‘cup/glass’, zeon1 ‘bottle’, etc.
- Measure words that are dividers (for entities/substances lacking natural atomicity) such as faai3 ‘piece’ in jat1 faai3 daan6goul1 ‘a piece of cake’, etc.8
- Measure words that respect natural atomicity, but they neither individuate nor create a unit for counting. They are used with furniture-type nouns, such as gin6 ‘piece’ in jat1 gin6 gaa1si1 ‘a piece of furniture’, etc.
- Measure words that are collective terms, such as kwan4 ‘group’ (for animals), batt1 ‘sum’ (for money), etc.
- Measure words that denote generic kinds, such as zong2 ‘kind’ or joeng6 ‘type’, etc.
- Measure words that describe the shape in which the objects/stuff can be gathered such as deoil ‘heap’ (for count nouns, e.g., potatoes), taan1 ‘pool’ (for mass, e.g., water), etc.
- Measure words that denote an indeterminate number/amount, such as di1 ‘a bit/a few’/‘some’.

This paper focuses on a pair of classifiers in Longdu which belong to the last category of measure words listed above, i.e., one that denotes an indeterminate number/amount.

---

7 Kanero et al. (2015) suggest that in Japanese (based on ERP signatures) count/mass distinction is semantically-based and that Japanese classifiers do not highlight the distinction between objects and substance. They point out, however, that the processing of classifiers can differ qualitatively across languages. Works such as Cheng & Sybesma (1998,1999), Her & Hsieh (2010), Liu (2015), among others, argue that there is syntactic count/mass distinction in Chinese, and it is reflected on the level of the classifier (the syntactic tests adopted by these works are not always the same). In Chinese, sortal classifiers are used for bounded objects (concrete or otherwise), while measure words are a mixed bag. To the extent that bounded objects correspond to count nouns and substance mass nouns, the data suggest that classifiers in Chinese are sensitive to count/mass distinction, with one group only selecting the former.

8 Faai3 ‘piece’ can also be used for bounded objects such as seko6tau4 ‘stone’. In such a usage, it is considered a sortal classifier.
It has been proposed that numeral-classifier units exhibit a multiplier-multiplicand relationship (Au-Yeung 2007, Her 2012). This applies to all classifiers that denote a unit, but not the last category. They are incompatible with numerals other than ‘one’, suggesting that this group of classifiers do not denote a unit that can be counted. I refer to them as ‘fuzzy’ classifiers. In Mandarin, it is *xiē*; in Cantonese, it is *di1*; in Longdu, two corresponding forms, *net!* and *ɑ³⁵*, are used to express indefinite and definite interpretation respectively.¹⁰

One might argue that if these classifiers cannot be used as units of counting, should they still be considered classifiers? I believe that their ‘classifier’ status is indeed marginal. They are different from other regular classifiers (sortal classifiers and other measure words) in that they neither denote nor create a unit of measurement. However, they do occupy a position that can be preceded by the demonstrative and ‘one’, they are followed by the noun (just like classifiers), and they don’t co-occur with other classifiers:

(2) [DEM - *‘one’*- *xiē* *di1net!* *ɑ³⁵* - N]

Furthermore, in Cantonese and Longdu, it is ungrammatical to have a demonstrative directly preceding a noun (i.e., *[DEM - N]). A classifier is needed, and this includes fuzzy classifiers. In view of this, I think fuzzy classifiers are syntactically classifiers, but a special subtype. They don’t mark unit-hood and they don’t facilitate counting.

Note that the Mandarin *xiē* and the Cantonese *di1* are often called plural classifiers (Cheng & Sybesma 2005, Wu 2019, among others). I decided to not to use the term ‘plural classifier’ as these classifiers are also compatible with unbounded entities (e.g., water, oil), for which the notion of plurality doesn’t easily apply.

Unlike sortal classifiers, which pose selectional restrictions on nouns based on some salient perceptual properties (either physical or functional) (Tai & Wang 1990), fuzzy classifiers are compatible with any nouns (e.g., dogs, cats, humans, buildings, water, courage, etc.). Unlike container measure words (e.g., *bēi* ‘glass’ or *pǐng* ‘bottle’ in Mandarin), which have a concrete shape, or measuring units, which denote specific quantitative measures (e.g., *chi* ‘foot’ or *bàng* ‘pound’ in Mandarin), fuzzy classifiers denote neither shapes nor specific quantities. They can be used with both discrete entities (e.g., apples) and homogenous substances (e.g., water). When used with discrete entities, they express non-specific plurality (must be more than one). When used with homogeneous substances, they denote a non-specific amount. When interpreted as an indefinite, they are similar to the English quantifier ‘some’ (Iljic 1994; Zhang 2013), e.g., *some apples, some water*. The fuzzy classifier can also be interpreted as definite. In these cases, it would be similar to ‘the Xs’ (entities) or ‘the X’ (amount).¹¹

Fuzzy classifiers express non-specific plurality or amount. This is not surprising as plural and mass expressions have been noted to share semantic similarities (e.g., cumulative reference (Link 2002, Quine 2013), non-singularity (Chierchia 1998a, b)). Syntactic reflexes of such similarities can be seen in English and Chinese. In English, in addition to *some*, which can select both mass and plural count nouns, mass and plural counts nouns can also appear without determiners as opposed to singular count nouns (Lasersohn 2019). In Chinese, the selectional properties of fuzzy classifiers can also be considered a syntactic reflex for such similarities.

1.3 The Longdu fuzzy classifier

Similar to other Chinese varieties, Longdu has the following order of nominal elements: [DEM - NUME - CLF - N]. Longdu [CLF - N] phrases can be interpreted as either definite or indefinite (similar to Cantonese, the Chinese variety that Longdu has the most contact with).¹² In Longdu, the classifier has the same form

---


10. See Deng et al. (2020) and Xiong & Huang (2020) for discussion on similar classifiers in Wugang Xiang and Chengdu Chinese respectively.

11. When the fuzzy classifier is used, it is simply that the specific quantity/amount is not indicated. It could be that contextually the exact quantity/amount is known.

12. Chappell (2009) reports that Min varieties located in Fujian province do not allow omission of the demonstrative to code definiteness, i.e., definite [CLF - N] phrases are not possible. Southern Min varieties located in neighboring Guangdong province to the south including Chaohou (Teochew), Shantou (Swatow) and varieties of the Leizhou peninsula however may allow this possibility likely due to contact influence from the surrounding Yue varieties.
regardless of whether the [CLF - N] phrase is interpreted as definite or indefinite, with the exception of the fuzzy classifier, which has two different forms (definite and indefinite).

The fuzzy classifier in Longdu, unlike its counterparts in Cantonese and Mandarin, has two forms: nei:\(^{11}\) (indefinite) and a\(^{55}\) (definite). Consider (3a) and (3b) to see the usage of nei:\(^{11}\):

(3) a. wa\(^{13}\) kʰo\(^{55}\) me:\(^{13}\) nei:\(^{11}\) pʰəŋ\(^{11}\)gwɔː\(^{13}\)
1SG go buy CLF\(_{FUZ,INDF}\) apple
‘I’m going to buy some apples.’

b. wa\(^{13}\) stə\(^{13}\) ji:\(^{13}\) nei:\(^{11}\) jɪːm\(^{13}\)
1SG want drink CLF\(_{FUZ,INDF}\) water
‘I want to drink some water.’

In (3a) and (3b), the two [CLF - N] phrases, denoting ‘apples’ (discrete entities) and ‘water’ (substance) respectively, are in the object position. The form of the classifier in both cases is nei:\(^{11}\) and the interpretation must be indefinite.\(^{13,14}\)

It is possible for the fuzzy classifier in the object position to have a definite interpretation as well. In (3a) and (3b), if the form of the fuzzy classifier changes to a\(^{55}\), the interpretation of the object would become definite. A different example with the definite fuzzy classifier a\(^{55}\) is given in (4):

(4) pəŋ\(^{11}\)-an\(^{13}\) a\(^{55}\) kao\(^{13}\) aɪ\(^{55}\) neŋ\(^{14}\)
give-PFV CLF\(_{FUZ,DEF}\) dog to people
‘[I] gave the dogs away to other people.’

In (4), if the fuzzy classifier is changed to the indefinite nei:\(^{11}\), it would mean that the speaker gave away some dogs to other people (for example in a situation where the speaker has a lot of puppies).\(^{15}\)

Chinese languages in general only take definite subjects in episodic sentences (Chao 1968, Li & Thompson 1989, Li 1998, among many others). In the Longdu sentences (5a) and (5b), the subject is definite, and the form of the classifier has to be a\(^{55}\):

(5) a. a\(^{55}\) pʰəŋ\(^{11}\)gwɔː\(^{13}\) hɔ\(^{55}\) hɔ\(^{13}\)-mi\(^{31}\)
CLF\(_{FUZ,DEF}\) apple very good-taste
‘The apples are very tasty.’

b. a\(^{55}\) jɪːm\(^{13}\) təŋ\(^{11}\)-tʰə\(^{31}\) lɔ\(^{3}\)
CLF\(_{FUZ,DEF}\) water cool-COMPL SFP\(^{16}\)
‘The water has cooled down completely.’

Using the indefinite form of the fuzzy classifier, nei:\(^{11}\), would render (5a) and (5b) ungrammatical.\(^{17}\)

Longdu is spoken in a ‘dialect’ island in Guangdong, surrounded by Cantonese speakers. This might explain the availability of definite [CLF - N] phrases in Longdu.

\(^{13}\) The objects/substance contrast seems to be dependent on the noun. For instance, [fuzzy classifier – ‘fish’] can be interpreted as both plural (more than one fish) or noncount substance (fish substance). If it is [fuzzy classifier – ‘fish meat’], then only the substance reading is available. See Cheng et al. (2008) on how lexical provision can affect count/mass interpretation in Chinese.

\(^{14}\) (3a) and (3b) will still be grammatical if nei:\(^{11}\) is missing. The interpretations will be slightly different. In (3a), if nei:\(^{11}\) is missing, the speaker is simply saying s/he is going to do some apple-buying. It also gives the feeling that the apple-buying is an expected event (for the hearer) while with nei:\(^{11}\), the event is not expected (for the hearer). In (3b), without nei:\(^{11}\), it can be the answer to the question ‘What would you like to drink? Wine? Beer? Water?’ With nei:\(^{11}\), it is more likely to be used when one is thirsty and wants some water.

\(^{15}\) If the classifier is missing in (4), the sentence will be ungrammatical.

\(^{16}\) SFP: sentence-final-particle

\(^{17}\) In (5a) and (5b), if the classifier is missing, the sentences would sound unnatural.
In (one type of) locative existential sentences in Mandarin Chinese, the existential verb 有 ‘have’ takes a clausal complement consisting of an indefinite NP and a locative PP (Huang 1987, Gu 1992). Similarly in Longdu locative existential sentences, the post-‘have’ (wu:³¹) object has to be indefinite, and as expected, only nei:¹¹ can be used, as in (6):

(6) wu:³¹ nei:¹¹ pʰɘŋ³¹gwɔː¹³ dᵣ⁵⁵ gɛ³³ tʰɔɪ³³ e¹¹
have CLF FUZ INF apple be.at CLF table there
‘There are some apples on the table.’

Fuzzy classifiers are not compatible with numerals other than ‘one’. This is the same as in Cantonese and Mandarin. In Cantonese and Mandarin, there exists only one form of the fuzzy classifier. In Longdu, after the numeral ‘one’, only the indefinite fuzzy classifier can be used. This is shown in (7):

(7) a¹¹ nei:¹¹ pʰɘŋ³¹gwɔː¹³
one CLF FUZ INF apple
‘some apples’

In (7), the amount is not specified. It is not possible to answer the question ‘How many apples?’ with (7). If nei:¹¹ is replaced by a⁵⁵ in (7), the sentence would be ungrammatical.

The inability for the fuzzy classifier to appear with other numerals suggests that it is impossible to specify the number of the noun in individualized units with the fuzzy classifier. The numeral ‘one’, when preceding the fuzzy classifier, does not provide the cardinality of one (counting the noun with a single token of the classifier unit). The numeral ‘one’, in this usage, is more like a grammatical marker for indefiniteness (Steindl 2010, Dryer 2013). This is unsurprising as the numeral ‘one’ has been attested as the most common source from which the indefinite articles are derived (Givón 1981, Heine 1997). Heine (1997) proposes that there are five stages in the process of grammaticalization through which the numeral ‘one’ develops into a fully grammaticalized marker of indefiniteness, namely, numeral, presentative use, non-identifiable specific reference, non-identifiable non-specific reference, and non-referential use. Chen (2003) shows that ['one' - CLF] in Mandarin Chinese is employed in all five usages above and is most similar to an indefinite article. The numeral ‘one’, however, also maintains its use as a cardinal number when preceding the classifier. For instance, [yī ‘one’ - CLF - N] in Mandarin can be used to answer a question asking for ‘how many N?’ showing that the numeral can still function like a regular cardinal number. The same applies to the Longdu a⁵⁵ (e.g., a⁵⁵ ge¹¹ pʰɘŋ³¹gwɔː¹³, ['one' - CLF - ‘apple’], ‘one apple’). I assume that ‘one’ in different varieties of Chinese is lexically ambiguous. It can be the cardinal number ‘one’ or an indefinite article, but when it precedes the fuzzy classifier, it can only be an indefinite article, as there is no counting involved. ¹⁸

The incompatibility between a⁵⁵ ‘one’ and the definite fuzzy classifier a⁵⁵ can be explained in the following way. When a⁵⁵ is an indefinite article, there is a mismatch in definiteness between it and the following definite fuzzy classifier a⁵⁵; when a⁵⁵ is a number, it is still incompatible with the definite fuzzy classifier a⁵⁵ because fuzzy classifiers cannot be counted. Note also that numerals in Chinese have been claimed to encode indefiniteness (Cheng & Sybesma 1999).

The fuzzy classifier in Mandarin, together with the optional preceding ‘one’, (yī) xiē, has been treated as a quantifier meaning ‘some’ (Iljic 1994, Zhang 2013), as in (8):

(8) yī xiē shǔ
one XIE book
‘some books’

¹⁸ There are many other differences between the cardinal number ‘one’ and the indefinite article ‘one’. It is possible to stress the cardinal number ‘one’, but it is not possible to stress the indefinite article ‘one’ (Sio 2006). Liu (2015), following Chao (1968), treats the Mandarin yī ‘one’ as a determinative quantifier when appearing with temporary classifiers in Mandarin Chinese (e.g., shēn ‘body’, tóu ‘head’), giving rise to the part-related meaning of ‘all over the, throughout the, to the whole extent of’, as in e.g., yītóu bái fā [one-CLF-HEAD-white hair], ‘white hair all over the head’ (Chao 1968: 603). When appearing with other numerals, this special meaning disappears. This again illustrates the difference between the numeral ‘one’ and other numerals in (different varieties of) Chinese.
Wu (2019), on the other hand, argues against treating (yī) xiē as a quantifier as it has different distribution from quantifiers in Chinese. For instance, unlike quantifiers, (yī) xiē cannot occur with singular classifiers (as shown in (9a) and (9b)), and unlike quantifiers, (yī) xiē cannot be followed by the modification marker de (as shown in (10a) and (10b)). Examples in (9) and (10) are taken from Wu (2019:14).

(9) a. jǐ zhī māo
   several CLF cat
   ‘several cat’

   b. *yī xiē zhī māo
      one XIE CLF cat
      Intended reading: ‘several cats’

(10) a. xūduō de māo
    many DE cat
    ‘many cats’

   b. *yī xiē de māo
      one XIE DE cat
      Intended reading: ‘some cats’

The same applies to the Cantonese fuzzy classifier (di1) and Longdu fuzzy classifiers (nɛɪː¹¹ and ɑ⁵⁵). They cannot precede regular classifiers or the modification marker, unlike quantifiers.

Even though I treat the use of xiē immediately preceding a noun as a classifier, I would like to point out that the Mandarin xiē has one un-classifier-like usage when it (necessarily in a reduced phonological form) is not preceded by the numeral yī ‘one’: it can precede the general classifier ge (Lü 2002, Zhang 2013, Wu 2019). Zhang (2013) notes that in (11a), ge cannot be replaced by other classifiers, but (11b) from Wu (2019) shows that other classifiers are also possible.

(11) a. zhè (*yī) xie ge rīzi
     this one XIE CLF day
     (Lü 2002:1391)

     b. zhè (*yī) xie zhī māo
     this one XIE CLF cat
     ‘these cats’

In Longdu, I observe a similar but not identical case, as shown in (12):

(12) tsi¹³ (*a⁵⁵) nev⁻¹¹ a⁵⁵ ha:n³je¹³
     this one NEI CLF FUZ.DEF thing
     ‘these things here’

In (12), nev⁻¹¹ cannot be followed by other classifiers other than a⁵⁵ (the definite fuzzy classifier). Furthermore, the demonstrative must be present and a⁵⁵ ‘one’ must be absent. Note that the position of nev⁻¹¹ in (12) is not a position for quantifiers. It is unclear how one should gloss nev⁻¹¹ in (12). My informants said that tsi¹³ nev⁻¹¹ in (12) is similar to the meaning of ‘this place’. A possible piece of support comes from the word for ‘here’, which is tsi⁻¹¹. Further investigation would be needed to ascertain the exact nature of this non-classifier usage of nev⁻¹¹, or if it is in fact related to the classifier usage of nev⁻¹¹. I will assume that it serves a different grammatical function in (12) as it precedes the definite fuzzy classifier and is not compatible with a⁵⁵ ‘one’. I will focus only on the fuzzy classifier usage of nev⁻¹¹.

In [DEM - CLF - N] phrases, both the definite and the indefinite versions of the fuzzy classifier can be used, as shown in (13a) and (13b):
The whole [DEM - CLF - N] phrase has a definite interpretation due to the presence of the demonstrative, regardless which fuzzy classifier is used. It is unclear to us what the semantic differences between the definite and the indefinite fuzzy classifier are in the presence of the demonstrative, though syntactically they are different: only (13b) allows NP-ellipsis, as I will discuss in Section 2.19

Lien (1999) mentions that plural demonstratives tsialhia ‘these/those’ in Taiwanese Southern Min are actually fused forms originating in demonstratives tsitalhit and the plural classifier koa (=fuzzy classifier as per my analysis). The disyllabic form [*hit + *koa] is still attested in modern Xiamen variety (Chen 2020). Longdu, as I saw, also has the disyllabic form.

1.4 A note on definiteness

In this article, definiteness is understood as the grammatical encoding of the pragmatic concept of identifiability. Identifiability is related to the assumptions made by the speaker on the cognitive status of a referent in the mind of the addressee in the context of an utterance (Chen 2004). Generally speaking, a definite expression is used if the speaker assumes that the referent is identifiable in the mind of the addressee, or else an indefinite expression is used. There can be many contexts in which an entity is considered identifiable and thus warrant the use of a definite expression. Semantic literature distinguishes two kinds of definites: familiar definites and unique definites (Schwarz 2009, Jenks 2015). Familiar definites are licensed by antecedents (i.e., anaphoric) and unique definites are licensed by uniqueness. There are different kinds of unique definites (Schwarz 2009), for instance, larger situation definites (e.g., the sun), weak definites (e.g., I went to the supermarket), immediate situation definites (e.g., close the window, please.), and part-whole bridging definites (e.g., I bought a shirt yesterday. The sleeves are too long.). Jenks (2015) shows that in many numeral classifier languages, including Mandarin, unique definites are realized as bare nouns, while familiar definites are realized as demonstratives or overt pronouns. He also notes that in languages where classifiers mark definiteness (e.g., Cantonese), the patterns could be different. In particular, Jenks (2015) notes that Cantonese bare nouns can be used for weak definites, and larger situation uses, but not for immediate situation uses or part-whole bridging, where a classifier is needed.

Longdu is like Cantonese in this respect. In Longdu, classifiers are needed for both familiar contexts and unique contexts. (14) illustrates the use of the definite fuzzy classifier a⁵⁵ in a familiar context. A bare noun would be ungrammatical in this case. Regarding unique contexts, classifiers must be present in immediate situations and part-whole bridging contexts. (15) and (16) illustrate this, again with the definite fuzzy classifier a⁵⁵. If the classifier is missing, the sentences would become ungrammatical. For larger situation contexts, a bare noun is used, (17). In (17), the understanding is such that there is one unique/general Bodhisattva that does the protecting and providing; For weak definites, only a bare noun (no classifiers) should be used, (18).

---

19 Note that in (13b), the demonstrative is definite, and the fuzzy classifier is indefinite, and such mismatch doesn’t give rise to ungrammaticality. Previously (in the discussion following (7)), I proposed that the ungrammaticality of [*‘one’-CLF_{FUZ-DEF} - N] can be due to the mismatch between the definite article ‘one’ and the definite classifier. The grammaticality of (13b) indicates that the definiteness encoded by the classifier is different from the definiteness encoded by the demonstrative, and/or different kinds of definiteness work together to determine the final definiteness interpretation of the whole nominal.
(14) Familiar context:\(^{20}\)
\[\text{wa}^{13} \text{sɔŋ}^{33} \text{mɔ}^{31} \text{mɛː}^{13} \text{ɛŋ}^{13} \text{ɭʊɑŋ}^{33} \text{dɛʊ}^{33} \text{ʍʊn}^{34}.\]
1SG yesterday buy.PFV two CLF dress
\[\text{ɭɪɛː}^{11} \text{ŋa}^{33} .\]
CLF\(_{\text{FUZ,DEF}}\) dress very pretty SFP
‘I bought some new dresses yesterday. The new dresses are all very pretty.’

(15) Immediate situation:
\[\text{ɡʷɯn}^{45} \text{dɪɛ}^{13} \text{ɑ}^{55} \text{ʃʰɔː}^{55}!\]
close return CLF\(_{\text{FUZ,DEF}}\) window
‘Close the windows!’

(16) Part-whole bridging:\(^{21}\)
\[\text{wa}^{13} \text{sɔŋ}^{33} \text{mɔ}^{31} \text{mɛː}^{13} \text{ɛŋ}^{13} \text{ɡɪɛn}^{33} \text{sɔ}\text{t̚}^{55}\text{sɑː}^{45}\]
1SG yesterday buy.PFV CLF shirt
\[\text{ɑː}^{55} \text{nɪʊ}^{13} \text{hɔː}^{13} \text{dɘɔ}^{33} \text{ⁿdɑ} \text{p̚}^{31} \text{gɛ}^{33}.\]
CLF\(_{\text{FUZ,DEF}}\) button very big CLF SFP
‘I bought a shirt yesterday. The buttons are very big.’

(17) Larger situation:
\[\text{ʍʊː}^{3¹} \text{sɑː} \text{t̚}^{3¹} \text{ʍʊː}^{3³} \text{tʰɪː}^{3⁴}\]
Bodhisattva protect-grant
‘The Bodhisattva protects and provides.’

(18) Weak definite:
\[\text{i}^{45} \text{ɡʰɔ}^{55} \text{ɡɛ}^{33} \text{sjɪː}^{1¹}\]
3SG go-PFV market
‘S/he went to the market.’

The definite Longdu examples in this study are either used in familiar contexts or immediate situations (except those in this sub-section).\(^{22}\) In (14), (15) and (16) where the definite fuzzy classifier is used, replacing it with the indefinite fuzzy classifier will render the sentence ungrammatical.

### 1.5 Other usages of the fuzzy classifier

In addition to appearing before the noun, the fuzzy classifier in many Chinese varieties (e.g., Cantonese, Mandarin) is also used in other contexts. In particular, it can appear before an adjective, meaning ‘a little’ or after an adjective, denoting the comparative form of the adjective. Both Cantonese and Longdu examples are provided in (19) and (20):

(19) a. \(\text{jau}^{5} \text{di}^{1} \text{dyun}^{2}\) (Cantonese)
have CLF\(_{\text{FUZ}}\) short
‘(It’s) a bit (too) short.’

---

\(^{20}\) Only the definiteness of the fuzzy classifiers is indicated in the examples. The perfective aspectual particle has the form \(\text{ɛŋ}^{13}\) here, while in (4) the form is \(\text{aŋ}^{13}\). It might be due to vowel harmony.

\(^{21}\) \(\text{ˈdɑp}^{31}\) is the classifier for individual buttons.

\(^{22}\) In Longdu, in addition to [CLF - N] phrases, which can be definite and [DEM – CLF - N] phrases which are always definite, [bare modifier - CLF - N] phrases are also always definite (which will be discussed in section 4). Definite bare nouns include proper names, kinship terms and pronouns. This article only focuses on definite nominals containing the fuzzy classifier.
In Cantonese, there is no marking on the definiteness of the fuzzy classifier, thus *di*I is simply glossed as a fuzzy classifier. In Longdu, the gloss is more precise. I indicate that the fuzzy classifier is the indefinite one. In (19b) and (20b), only an indefinite fuzzy classifier is allowed. These two usages of the fuzzy classifier are not shared with other regular classifiers.

2 NP-ellipsis (NPE)

Cross-linguistically, NPE contexts are associated with two basic aspects which are generally ascribed to classifiers: classification and individuation (Cheng & Sybesma 2009, Alexiadou & Gengel 2012). Alexiadou & Gengel (2012) claim that NPE in Romance and Germanic languages is licensed by a Classifier Phrase. Chinese classifiers can license ellipsis. Examples from Cantonese, Mandarin (taken from Cheng & Sybesma 2009) and Longdu are shown in (21), (22) and (23) respectively:

(21) Cantonese (Cheng & Sybesma 2009)
keoi5 m4 zung1ji3 go2 bun2 syu1, keoi5 zung1ji3 nei1 bun2
3SG NEG like that CLF book, 3SG like this CLF
‘He does not like that book. He likes this one.’

(22) Mandarin (Cheng & Sybesma 2009)
tā bù xīhuān nèi běn shū, tā xīhuān zhèi běn
3SG NEG like that CLF book, 3SG like this CLF
‘He does not like that book. He likes this one.’

(23) Longdu
i:t55 m31 ʒ̥ɔŋ3jiː 1 liː tsi13 kwɔan13 si55
3SG NEG like that CLF book
i:t55 ʒ̥ɔŋ3jiː 1 ʒi33 kwɔan13
3SG like this CLF
‘S/he does not like that book. S/he likes this one.’

In all three examples above, there is a nominal gap after the classifier in the second clause. The missing noun not only matches the feature of the immediately preceding classifier, it also has to be the same kind of objects (i.e., book) as the noun in the preceding clause.23

Adopting the assumption that classifiers can license NPE, I will now focus on cases where they can’t. As mentioned earlier on, in Longdu [DEM – CLF - N] phrases, the demonstrative is compatible with both the definite and the indefinite fuzzy classifier. However, if the noun is to be elided, it is only possible with the indefinite fuzzy classifier. Definite fuzzy classifiers cannot license NPE-ellipsis:

23 The classifier in these examples is also compatible with ‘notebook’ (as in a small book for writing notes in), for instance, but the missing noun cannot be interpreted as a notebook, as it has to be identical with the preceding noun in the previous clause.
In (24a) and (24b), whether or not the demonstrative is present, it remains the same that only the indefinite fuzzy classifier can license NPE. In Cantonese and Mandarin, NPE after the fuzzy classifier, [(DEM) - CLF_{FUZ} - N], is also possible. However, in these cases, there is no explicit marking on the definiteness of the classifier.

### 3 Classifier reduplication

Classifier reduplication in Chinese takes various patterns. I will focus on two patterns: [CLF~CLF] and [one - CLF~CLF]. Both of which appear in Longdu and in both cases, when the fuzzy classifier is used, only the indefinite form is allowed.

[CLF~CLF] in varieties of Chinese gives rise to two kinds of grammatical meaning: a plural reading and a universal quantification reading. The post-verbal position is associated with the plural reading, (25), while the pre-verbal position is associated with the universal quantification reading with the obligatory presence of DOU (Paris 2007), an element associated with the licensing of universal quantification (26), (27).24

Mandarin (Steindl 2010: 71)25:

(25) tiān-shāng piāo-zhe duō~duō yīn
sky-on float-PROG CLF~CLF cloud
‘Many clouds are floating in the sky.’

Cantonese:

(26) go3~go3 caang2 dou1 hou2 daai6
CLF~CLF orange DOU very big
‘Every orange is big.’

Longdu:

(27) ge31~ge31 pʰɔŋ31 ɡwɔː³¹ duː⁴⁵ hɔ⁵⁵ hɔ²³-mi³¹
CLF~CLF apple DOU very good-taste
‘Every apple is tasty.’

DOU (dōu in Mandarin; dou1 in Cantonese; du:⁴⁵ in Longdu) is obligatory when classifier reduplication appears in the subject position, giving rise to a universal quantification reading akin to ‘every’. Giannakidou & Cheng (2006) and Cheng (2009) treat DOU as an *iota*/maximality operator. Reduplicated classifiers give rise to a set of individuals, and DOU takes the maximum number of members of the given set.

In Longdu, sentences containing any post-verbal reduplicated classifiers (regular classifiers, definite fuzzy classifier, indefinite fuzzy classifier) are not accepted by my informants. I will only discuss pre-verbal reduplication in Longdu.

In Mandarin and Cantonese, even though classifier reduplication of the type [CLF~CLF] is possible, it is not possible with fuzzy classifiers in any positions. In (28), the reduplicated Mandarin fuzzy classifiers are in the object position; in (29), the reduplicated Cantonese fuzzy classifiers are in the subject position. If the fuzzy classifier in (28) and (29) would be replaced by a regular classifier, the sentences would be grammatical (as shown in (26) and (27) previously).

24 DOU (all capital letters) is used to represent the morpheme in its abstract form. It has different phonological forms in different Chinese varieties.

25 Steindl (2010) points out the plural reading in classifier reduplication is not just a regular plural. Plurality indicates simply more than one, while the plurality indicated by classifier reduplication normally denotes only higher cardinalities, namely, those bigger than what is countable for the speaker.
Mandarin:
(28) *tiān-shàng pīāo-zhe xiè-~xiè yún
sky-on float-PROG CLFFUZ~CLFFUZ cloud
Intended reading: ‘Many clouds are floating in the sky.’

(29) According to Cheng (2012), the numeral *di1~di1 cannot reduplicate to give rise to the reading of universal quantification for at least two reasons. Firstly, one of the properties of definite expressions is maximality, referring to the maximal set satisfying the predicate in the given domain. Similar to definite expressions, universal quantification also has such property. Furthermore, definite expressions are also similar to universal quantification in that they cannot appear in existential sentences, and can appear in the subject position, which is generally reserved for definite expressions. It is thus surprising that it is the indefinite fuzzy classifier that gets reduplicated.

It is puzzling as to why only the indefinite classifier can reduplicate to give rise to the reading of universal quantification for at least two reasons. Firstly, one of the properties of definite expressions is maximality, referring to the maximal set satisfying the predicate in the given domain. Similar to definite expressions, universal quantification also has such property. Furthermore, definite expressions are also similar to universal quantification in that they cannot appear in existential sentences, and can appear in the subject position, which is generally reserved for definite expressions. It is thus surprising that it is the indefinite fuzzy classifier that gets reduplicated.

In Longdu, reduplication of the fuzzy classifier is possible, but only its indefinite form reduplicates:

(30) *a Five~a Five pʰəŋ³¹gwɔː¹³ du:⁴⁵ hɔ¹³ hɔ³⁻⁵₁ˢ⁻¹⁻¹
CLFFUZ,INDF~CLFFUZ,INDF apple DOU very good-taste
‘All apples are tasty.’

(31) *a Five~a Five pʰəŋ³¹gwɔː¹³ du:⁴⁵ hɔ¹³ hɔ³⁻⁵₁ˢ⁻¹⁻¹
CLFFUZ,DEF~CLFFUZ,DEF apple DOU very good-taste
‘All apples are tasty.’

It is puzzling as to why only the indefinite classifier can reduplicate to give rise to the reading of universal quantification for at least two reasons. Firstly, one of the properties of definite expressions is maximality, referring to the maximal set satisfying the predicate in the given domain. Similar to definite expressions, universal quantification also has such property. Furthermore, definite expressions are also similar to universal quantification in that they cannot appear in existential sentences, and can appear in the subject position, which is generally reserved for definite expressions. It is thus surprising that it is the indefinite fuzzy classifier that gets reduplicated.

It is also puzzling that the fuzzy classifier in Longdu can reduplicate at all. Cheng (2012) claims that classifier reduplication giving rise to universal quantification is possible if the classifier can be interpreted as a divider unit. In Mandarin and Cantonese, the fuzzy classifier cannot be reduplicated. Following Cheng’s (2012) reasoning, I assume it is because Mandarin xiē and Cantonese di1 cannot be interpreted as an individual unit. This is not surprising, as the fuzzy classifier doesn’t impose any unit on the noun and cannot be counted with numerals. The surprising thing is rather that the Longdu indefinite fuzzy classifier is able to reduplicate. According to my informants, when the indefinite fuzzy classifier in Longdu is reduplicated, as shown in (30) earlier on, the meaning is that there are different accumulations of apples and all of them are tasty. There is no specification on any parameters of such accumulations. Longdu speakers conceptualize the context as having different units of apples. The units can be of different shapes and sizes, but in distinct geographical locations.

It is also possible to have the [one - CLF~CLF] reduplication pattern in Longdu, with the numeral ‘one’ preceding the reduplicated classifiers. When the fuzzy classifier is used, the meaning of this reduplication pattern is something akin to ‘different types of [N]’ and is again only available for the indefinite form of the fuzzy classifier. For instance, if asked the question ‘Do all Czech people like beer?’, one can answer with the following in Longdu:

(32) a Three ne Five~ne Five ne Five ney Three
one CLFFUZ,INDF~CLFFUZ,INDF people
‘Some people do; some people don’t.’

The same can be done in Cantonese as well. Even though the Cantonese fuzzy classifier cannot reduplicate to give rise to universal quantification, it can reduplicate in this pattern:

(33) jat1 di1~di1 jan4
one CLFFUZ~CLFFUZ people
‘Some people do; some people don’t.’
(32) and (33) have no verb phrases (possibly elided), but the interpretation is propositional. It is unclear how the meaning is composed, but the meaning suggests that the fuzzy classifier here refers to different abstract clusters of people. It is interesting that even though the fuzzy classifier in Cantonese cannot reduplicate to give rise to universal quantification, presumably due to its lack of ability to instantiate units, the fuzzy classifier can be reduplicated in this case to give rise to the meaning related to ‘various types of people’. Note also that this usage is not available in Mandarin.

4 Modification

When a bare modifier is placed before a [CLF - N] phrase in Longdu, the interpretation is always definite.26 This applies to all kinds of classifiers, including the fuzzy classifier. When the fuzzy classifier is used in this construction, the fuzzy classifier has to be the definite one (a\textsuperscript{55}), i.e., [bare modifier - CLF\textsubscript{FUZ.DEF} - N]. An indefinite fuzzy classifier would lead to ungrammaticality. Examples (34), (35) and (36) illustrate the phenomenon with different kinds of modifiers:

(34) Locative:
\[
\text{ʃɔŋ³³ tʰɔɪ³³ a⁵⁵/*nɛɪː¹¹ pʰɘŋ³¹gwɔː¹³ hɔ¹³ hɪɛ ʔ̚³¹ nɛɪː¹¹} \text{CLF table CLF\textsubscript{FUZ.DEF} CLF\textsubscript{FUZ.INDF} apple good-eat a.bit}
\]
‘The apples on the table are tastier’

(35) Relative clause:
\[
\text{sɔŋ³¹moː³¹ mɛː¹³ a⁵⁵/*nɛɪː¹¹ pʰɘŋ³¹gwɔː¹³ hɔ¹³ hɪɛ ʔ̚³¹ yesteday buy CLF\textsubscript{FUZ.DEF} CLF\textsubscript{FUZ.INDF} apple good-eat}
\]
‘The apples which were bought yesterday were tasty’

(36) Adjective:
\[
\text{ɦɔŋ³³ sək³¹ a⁵⁵/*nɛɪː¹¹ tɔɪ³¹ kʰɔː⁵⁵ aŋ¹³ tɑɪ¹¹ aː¹¹ red-colour CLF\textsubscript{FUZ.DEF} CLF\textsubscript{FUZ.INDF} bag go-PFV where SFP}
\]
‘Where did the red bags go?’

In the above examples, I showed that only a definite fuzzy classifier allows a bare modifier appearing on its left:

(37) [bare modifier - CLF\textsubscript{FUZ.DEF}/CLF\textsubscript{FUZ.INDF} - N]

As noted earlier, only an indefinite fuzzy classifier in Longdu can license NP-ellipsis. The combination of affairs leads to the prediction that NPE is never possible when there is a bare modifier to the left of the fuzzy classifier, and this is indeed the case, as shown in (38).

(38) a. *[bare modifier- CLF\textsubscript{FUZ.DEF} - N]

b. * ɦɔŋ³³ sək³¹ a⁵⁵\textsuperscript{55} tɔɪ³¹ kʰɔː⁵⁵ aŋ¹³ tɑɪ¹¹ aː¹¹ red-colour CLF\textsubscript{FUZ.DEF} bag

5 Definiteness contrast in classifiers in general

In the previous sections, I presented that there are two versions of the fuzzy classifier in Longdu (definite and indefinite). They are of different phonological forms and have different syntactic properties. An interesting question would be how much of this can be generalized within Longdu (not restricted to the Longdu fuzzy classifier only, but Longdu classifiers in general) and also across Chinese varieties. Are there also two versions (definite and indefinite) of other classifiers in Longdu even though we don’t see any contrast in forms? How

26 ‘Bare modifiers’ refer to modifiers that do not come with a modification marker, which is used often is modification in Chinese (e.g., de in Mandarin, ge\textsuperscript{3} in Cantonese).

27 Note also the use of nɛɪː\textsuperscript{11} at the end of (34). It is used after an adjective to indicate the comparative form, similar to example (20b).
about other Chinese varieties? I believe the answer is yes for both questions. It has in fact been proposed that there are two kinds of classifiers (definite and indefinite) in some varieties of Chinese (Sio 2006). Furthermore, regular classifiers in Longdu and in Cantonese display the same pattern in NPE as Longdu fuzzy classifiers, suggesting that even though we can’t see the differences in forms (definite and indefinite), the distinction might still exist.

Sio (2006) observes that in Cantonese and Wenzhou (Wu Chinese variety), [CLF - N] phrases can be interpreted as definite or indefinite, while in Mandarin, Hakka, and Taiwanese Southern Min, [CLF - N] phrases can only be interpreted as indefinite. She further observes that only in Chinese varieties where [CLF - N] phrases can be interpreted as definite, [bare modifier – CLF - N] phrases are permissible and [bare modifier - CLF - N] phrases are always definite.28 To account for the co-relation, Sio (2006) proposes that in Cantonese, there are two kinds of classifiers (albeit observing no differences in forms), definite and indefinite. Structurally, she proposes a referential layer in the Chinese nominal (on top of the projection for numerals), the Specificity Phrase (SP), which is projected for all referential nominals. When the classifier is definite, it moves from the head of the Classifier Phrase to the head of SP. Similar movement of the classifier (CLF to D movement) for definite nominals have been suggested in various proposals for Chinese and other Southeast Asian languages (Simpson 2005, Li & Bisang 2012). In Sio’s (2006) proposal, she stipulates that only when the S head is occupied by a definite classifier, a bare modifier can appear in the specifier position of the SP layer. This accounts for (i) why [bare modifier - CLF - N] phrases are always definite (a bare modifier cannot appear if the classifier is not definite and will not move to S) and (ii) why in Chinese varieties in which [CLF - N] phrases can only be indefinite (e.g., Mandarin), [bare modifier – CLF - N] phrases are not possible (again, no definite classifier to S movement).

The Longdu fuzzy classifier, due to its two distinct forms, provides supporting evidence to some of the above claims. As we have seen earlier on, in [bare modifier - CLF - N] phrases in Longdu, when the classifier is the fuzzy classifier, the form of the fuzzy classifier is indeed always the definite one, a55.

Patterns of NPE for classifiers in general in Longdu and Cantonese are similar to the behavior of Longdu fuzzy classifiers in NPE context. Consider the Longdu examples (39), (40) and (41), where a regular sortal classifier is used:

(39) \(\text{wa}^{13}\) \(k\text{g}^{15}\) \(m\text{e}^{13}\) \(g\text{e}^{33}\) \(t\text{ɔ}^{11}\)

1SG go buy CLF bag

‘I am going to buy a bag (or the bag).’

(40) \(g\text{e}^{33}\) \(t\text{ɔ}^{11}\) \(k\text{g}^{15}\) \(m\text{e}^{13}\) \(a^{11}\)

CLF bag go-PFV where SFP

‘Where did the bag go?’

(41) a. \(\text{wa}^{13}\) \(k\text{g}^{15}\) \(m\text{e}^{13}\) \(h\text{ɔ}^{33}.\text{s}^{33}\) \(g\text{e}^{33}\) \(t\text{ɔ}^{11}\)

1SG go buy red-colour CLF bag

‘I am going to buy the red bag.’

b. * \(\text{wa}^{13}\) \(k\text{g}^{15}\) \(m\text{e}^{13}\) \(h\text{ɔ}^{33}.\text{s}^{33}\) \(g\text{e}^{33}\) \(t\text{ɔ}^{11}\)

1SG go buy red-colour CLF bag

Intended reading: ‘I am going to buy the red bag.’

In Longdu, [CLF - N] phrases with regular classifiers can be interpreted as definite or indefinite, depending on syntactic positions and contextual information. In (39), the most natural reading for the object [CLF - N] phrase is an indefinite reading due to its irrealis mood, though a definite reading is also possible if the context is such that there is a specific bag that had been discussed between the speaker and the hearer; in (40), the subject [CLF - N] phrase has a definite reading only (as subjects are generally required to be definite in Chinese episodic sentences). In (41a), without NPE, the sentence is unproblematic, and the interpretation of the object is only definite. It is expected as it is a [bare modifier - CLF - N] phrase. When the noun is elided in (41b), the sentence becomes ungrammatical.

28 In Wenzhou, the picture is more complicated in that in definite [CLF - N] phrases, the tone of the classifier changes into a dipping tone (Cheng & Sybesma 2005). However, in [bare modifier - CLF - N] phrases, the tone of the classifier can remain unchanged (Sio 2006).
In Cantonese, the same pattern ensues, NPE is not possible in [bare modifier - CLF - N] phrases with regular classifiers:

(42) *hung4-sik1   bun2    doi2
red-colour    CLF    bag

These data can all be accounted for if in [bare modifier - CLF - N] phrases, the classifier (whichever kind it is) is always definite (Sio 2006), and definite classifiers cannot license NPE.

Since Chinese requires a definite subject in episodic sentences, this also predicts that when a [CLF - N] phrase (with any classifier) is in the subject position in Cantonese and Longdu, with the classifier being definite, NPE is impossible. This is shown in (43a) and (43b). When [CLF - N] is in the object position with an indefinite interpretation, it is then possible. This is indeed the case, as shown in (44a) and (44b):

(43) a.  *go3   doi2    heoi3-zo2   bin1    aa3?  (Cantonese; subject NPE)
    CLF    bag    go-PFV    where    SFP
    Intended reading: ‘Where did the bag go?’

b.  *ge:33   tɔi‡   kʰo:33-αŋ11   tar11   a:11?  (Longdu; subject NPE)
    CLF    bag    go-PFV    where    SFP
    Intended reading: ‘Where did the bag go?’

(44) a.  ngo5    heoi3    maai5    go3    doi2  (Cantonese; object NPE)
    1SG    go    buy    CLF    bag
    ‘I go buy one [a bag].’

b.  wa13    kʰo55    me:113   ge:33   tɔi‡  (Longdu; object NPE)
    1SG    go    buy    CLF    bag
    ‘I go buy one [a bag].’

Note that in (44a) and (44b), with NPE, the interpretation of the object cannot be definite; without NPE, the object can be interpreted as definite as [CLF - N] phrases in Cantonese and Longdu are ambiguous between a definite and an indefinite reading.

In brief, the NPE data above show that regular classifiers in Longdu and Cantonese cannot license NPE when they are interpreted as definite. This is the same pattern as we found in Longdu fuzzy classifiers. The only difference is that in Longdu, the definiteness of the fuzzy classifiers is marked overtly. It is unclear to us at this stage as to why definiteness is related to ellipsis. Clarifying this matter would involve an investigation on how definiteness is encoded in relation to the classifier (e.g., lexical encoding, definiteness derived from CLF to D movement, etc.), the precise mechanism/structural requirements on how classifiers license ellipsis and how the two interact. Note that in addition to NPE, the definite fuzzy classifiers also cannot reduplicate. Even though I do not have answers as to why definite classifiers have more restricted functions, the Longdu data show that these patterns are related. I leave this to future research.29

---

29 One anonymous reviewer suggested the possibility that the definite fuzzy classifier in Longdu, aα⁵⁵, is actually a plural definite determiner, which would explain why it behaves so differently from the indefinite fuzzy classifier, nein. Even though I think it is an interesting idea and there are languages where demonstratives and other determiners can co-occur (e.g., Irish, Modern Greek), there are a few potential problems with this approach. Firstly, as far as I know, there are no other known definite determiners in Chinese (except demonstratives). Secondly, aα⁵⁵ has similar properties as regular classifiers. Demonstrators cannot combine with a noun directly in Longdu, a classifier (any classifier) is needed to appear in-between, and aα⁵⁵ can also fulfil that task; the properties of aα⁵⁵, in its inability to license NPE when appearing in [bare modifier - CLF - N] phrases and in subject [CLF - N] phrases, are the same as regular classifiers in Longdu and Cantonese. If I claim that aα⁵⁵ is a plural definite determiner, I will also need to claim that classifiers in [bare modifier - CLF - N] phrases and in subject [CLF - N] phrases in Longdu and Cantonese are singular definite determiners. It is however possible that the definite fuzzy classifier and the indefinite fuzzy classifier are not in the same syntactic position. This will depend on one’s theory of the syntactic encoding of definiteness, for example in Simpson (2005), Sio (2006) and Li & Bisang (2012), definite classifiers move from the classifier head to a higher head of a referential projection.
6 Conclusion

This article discussed the grammatical properties of a pair of Longdu fuzzy classifiers, *nel* and *a*. The explicit definiteness marking provides a rare glimpse into the definiteness of the classifier when embedded in different kinds of noun phrases. The impossibility of NP-ellipsis in [bare modifier - CLF - N] phrases (always definite) and subject [CLF – N] phrases (also always definite) with regular classifiers in Longdu suggests the existence of two kinds of classifiers, definite and indefinite, in all Longdu classifiers. The same pattern also applies to Cantonese, where [bare modifier - CLF - N] phrases and subject [CLF – N] phrases also resist NP-ellipsis, suggesting that the presence of two kinds of classifiers with definiteness contrast can be a phenomenon that spans over other Chinese varieties. The definite and indefinite fuzzy classifiers in Longdu have different grammatical properties, e.g., modification, reduplication, NP-ellipsis. I do not yet know what the connection between these phenomena and definiteness is. Further research into this direction will advance our current understanding of nominal structures in classifier languages in general.

References


**Reviewed:** Received 26 May 2023, revised text accepted 20 December 2023, published 1 February 2024

**Editors:** Editor-In-Chief Dr Mark Alves | Managing Eds. Dr Paul Sidwell, Dr Sigrid Lew, Dr Mathias Jenny, Dr Kenneth Van Bik