A preliminary study of physical energy distribution model of Sciaenops ocellatus under swimming conditions
Date
2018
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Narrator
Transcriber
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
This study focused on Sciaenops ocellatus in deep-water cage culture studying the changes of the main energy substances and metabolites during swimming. Based on our results, a physical energy distribution model was constructed. The main conclusions were as follows: (1) A power function relationship between the maximum swimming time and swimming speed of the red drum was found. (2) At high swimming speed, there was a significant increase in red drum blood glucose concentration, a slight decrease in the amount of muscle glycogen, and a significant decrease in hepatic glycogen. When fish were close to fatigue, hepatic glycogen concentration was close to depletion, so hepatic glycogen concentration in the red drum can be used as an important indicator to determine sustained swimming ability in the fish. (3) There was a significant increase in lactic acid and lactic acid concentration during swimming at a high speed, which indicated that the process of high-speed swimming in the red drum was accompanied by anaerobic respiration and aerobic respiration. (4) This study established a simple swimming physical energy distribution model of red drum based on the energy consumption of hepatic glycogen. The model shows a linear relationship between time and swimming speed. (5) A calculation method for the maximum tidal current velocity in red drum farming areas was put forward based on the physical energy distribution model of the red drum and the rules of the tidal currents. Thish may give practical reference for farming site selection.
Description
Keywords
physical energy distribution model, Sciaenops ocellatus, sea area selections, swimming capacity, Fish culture--Israel., Fish culture
Citation
Extent
9 pages
Format
Geographic Location
Time Period
Related To
Related To (URI)
Table of Contents
Rights
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.