Transcriptome analysis reveals the molecular basis of the response to acute hypoxic stress in blood clam Scapharca broughtonii

Date
2022
Authors
Wang, Zhenyuan
Zhang, Gaowei
Ge, Guangyu
Wu, Lina
Wang, Yan
Liu, Zhihong
Zhou, Liqing
Sun, Xiujun
Wu, Biao
Contributor
Advisor
Department
Instructor
Depositor
Speaker
Researcher
Consultant
Interviewer
Annotator
Journal Title
Journal ISSN
Volume Title
Publisher
Volume
74
Number/Issue
Starting Page
Ending Page
Alternative Title
Abstract
Hypoxia tolerance and adaptive regulation are important for aquatic animals, especially for species with poor mobility, such as most bivalves. Previous studies have confirmed that the blood clam Scapharca broughtonii has strong hypoxia resistance. However, the molecular mechanism supporting its hypoxic tolerance is still largely limited. To further screen the genes and their potential regulation of hypoxia tolerance, the transcriptome changes of S. broughtonii after acute hypoxic stress were explored by RNA sequencing. In this study, the average value of Q30 is 92.89%, indicating that the quality of sequencing is relatively high. The Unigenes obtained were annotated using four databases, namely Interpo, KEGG, Swisspro and TrEMBL. The annotation rates in these four databases were 71.82%, 75.95%, 92.98%, and 79.26%, respectively. And also, there were 649 DEGs in group B (dissolved oxygen (DO) of 2.5 mg/L) compared with group D (DO of 7.5 mg/L), among which 252 were up-regulated, and 397 were down-regulated. There were 965 DEGs in group A (DO of 0.5 mg/L), 2.5 mg/L, and 7.5 mg/L, compared with group B, among which 530 were up-regulated, and 435 were down-regulated. Meanwhile, there were 2,040 DEGs in group A compared with group D, among which 901 were up-regulated, and 1,139 were down-regulated. The main metabolic-related pathways of KEGG enriched in this study included Insulin secretion, Insulin signaling pathway, MAPK signal transduction pathway, and PPAR signaling pathway. These pathways may be critical metabolic pathways to solve energy demand and rebuild energy balance in S. broughtonii under hypoxic conditions. This study preliminarily clarified the response of S. broughtonii to hypoxia stress on the molecular levels, providing a reference for the following study on the response laws of related genes and pathways under environmental stress of S. broughtonii.
Description
Keywords
Scapharca broughtonii, hypoxia, transcriptome analysis
Citation
Extent
14 pages
Format
Geographic Location
Time Period
Related To
The Israeli Journal of Aquaculture - Bamidgeh
Table of Contents
Rights
Rights Holder
Local Contexts
Collections
Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.