The effect of dietary docosahexaenoic acid (DHA; 22:6n-3) on photoreceptor abundance, rhodopsin expression and growth in developing gilthead sea bream (<em>Sparus aurata</em>) larvae

Date

2023

Contributor

Advisor

Department

Instructor

Depositor

Speaker

Researcher

Consultant

Interviewer

Narrator

Transcriber

Annotator

Journal Title

Journal ISSN

Volume Title

Publisher

Volume

75

Number/Issue

Starting Page

Ending Page

Alternative Title

Abstract

This study determined the effect of prey DHA on larval gilthead sea bream (GSB; Sparus aurata) photoreceptor abundance, rhodopsin expression, and growth performance. It was carried out in a twenty-eight 400 l conical tank system that was stocked with 100 viable GSB eggs/l/tank. This allowed the testing of 4 levels of rotifer DHA; 0.99 (Low; L), 1.9 (Intermediate low; I-L), 3.2 (Intermediate high; I-H) and 12.1(High; H) mg DHA/g DW rotifer, which were fed (10 rotifers/ml) to 3-16 DPH larvae. These rotifer diets continued to be offered to 17-34 DPH fish, although these larvae predominantly fed on 4 DHA enriched Artemia nauplii treatments that were offered at a concentration from 0.1 nauplii/ml to 4 nauplii/ml, depending on larval age. This resulted in 4 DHA rotifer-Artemia ranges: 0.99-0.0 (L), 1.9-2.6 (I-L), 3.2-7.2 (I-H), and 12.1-11.77 (H) mg DHA/g DW. The 4 DHA treatments and ranges were tested in replicates of 7 conical tanks per treatment. Increasing rotifer DHA significantly (P<0.0001) improved TL, in an exponential manner, throughout larval rearing. DW in 34 DPH larvae was markedly (P<0.05) enhanced with dietary DHA inclusion in the rotifers and Artemia. There was a significant (P < 0.005) prey DHA dose dependent range effect on the abundance of photoreceptor cells in the retina of 34 DPH larvae. The gene expression of rhodopsin in GSB larvae was significantly (P<0.05) upregulated with dietary DHA dose range and larval age (P<0.0001). This study established a link between dietary DHA level with photoreceptor abundance and rhodopsin expression, which led to improved vision, prey acquisition, and growth in developing GSB larvae.

Description

Keywords

docosahexaenoic acid, fish larvae, fish larval growth, photoreceptor, rhodopsin, vision

Citation

Extent

15 pages

Format

Geographic Location

Time Period

Related To

The Israeli Journal of Aquaculture - Bamidgeh

Related To (URI)

Table of Contents

Rights

Rights Holder

Local Contexts

Email libraryada-l@lists.hawaii.edu if you need this content in ADA-compliant format.